Continuous Improvement Toolkit

Prioritization Matrix

The Continuous Improvement Map

Managing	Decidi	ng & Selecting		Planning 8	. Project	Management*
Risk PDPC	Decision Balance Shee	et Importance-Urgeno	cy Mappir	g Daily Pl	anning	PERT/CPM
FMEA RAID Log*	Force Field Analysis	Cost Benefit Analys	sis	MOST RAC	<u>CI Matrix</u>	Activity Networks
Risk Assessment*	Break-even Analysis	Voting TPN Analysi	is	SWOT Analys	<u>is Stal</u>	keholder Analysis
Fault Tree Analysis	ecision Tree Pick Cha	rt Four Field Matrix	Pro	oject Charter	Improv	vement Roadmaps
Traffic Light Assessment	Critical-to Tree QFD	Portfolio Matrix		PDCA Pol	icy Deploy	ment Gantt Charts
Lean Measures Kar	no Analysis Matrix Diagrai	m Paired Comparison	DMAI	C Kaizen Eve	ents Co	ntrol Planning
Bottleneck Analysis** C	Cost of Quality* Pugh Matrix	Prioritization Matrix	A3 Thir	nking Stand	ard work	Document control
OE Process Viold	E <u>KPIs</u> Pareto Ana	lysis C&E Matrix	arstand	ing Cross	s Training	Implementing
Des Canability Indiana	scriptive Statistics ANOV	A Chi-Square Cau	se & Eff	ect Value	e Analysis	Solutions**
Pi	robability Distributions Hy	pothesis Testing Desig	an of Expe	eriment Mist	ake Proofi	ng Ergonomics
Gap Analysis* Histo	ograms & Boxplots Multi	vari Studies Confider	nce Interv	als Simulati	on TPN	Automation
Reliability Analysis Gra	aphical Analysis Scatter F	Plots Correlation	Rearessia	on Pull	Flow	Just in Time
Understanding Performance MSA	Run Charts 5 Whys	Root Cause Analysis	Data Sno	oping Visu	al Manage	ment 5S
Benchmarking** Co	ontrol Charts Fishbor	e Diagram Tree Diagra	am* si	POC* Waste	Analysis	Quick Changeover
Data collection planner*	Sampling Morphologica	Analysis How-How D	Diagram**	Process R	edesign	Time Value Map
Check Sheets Interviev	ws Brainstorming SCAN	MPER** Attribute Ana	lysis S	paghetti Diagr	am Valu	e Stream Mapping
Questionnaires	Groups Affinity Diagram	Relationship Mapp	ing* I	Flow Process	Charts	Service Blueprints
Data	Mind Mapping	 Lateral Thinking 	Flowch	arting IDI	EFO P	rocess Mapping
Collection Observ	Ations Suggestion system	s Creating Ideas		Designing	& Analyz	ing Processes

Prioritization is an essential skill that needs to be mastered to make the best use of your own and your teams time and effort.

- A Prioritization Matrix provides a way to prioritize a diverse set of items into an order of importance.
- Allows the team to select the most appropriate option from several alternatives based on a predefined criteria.

Uses:

- □ To prioritize a list of items to select and decide a further action.
- Often used in the project selection process.

Examples:

- A project that you need to start.
- An issue that you need to resolve.
- A solution that you need to implement.

- □ It helps reduce options to the most effective and least costly.
- It allows the team to agree on the priorities and move toward the action collectively.
- It helps make use of time and resources to focus on the things that really matter.

Assessment Criteria:

- Developing them is the first step before prioritizing.
- Help narrow down the discussion.
- Provide a constant basis for comparison.
- Should cover all the aspects of the study to ensure that the selected option will be effective.
- Should be measured easily and objectively.

Brainstorming Affinity diagrams Voting

- \rightarrow Generate criteria
- \rightarrow Organize criteria
- \rightarrow Reduce criteria

Questions That may Help:

- □ Will the solution solve the problem permanently?
- Will it improve customer satisfaction?
- What are the cost for implementing the solution?
- □ How easy is it to do?
- How much time it will take?
- Are there any potential problems or risks that can arise in future?
- Are there any potential regulatory or safety issues that need to be considered?

Weighting Criteria:

You may weight up your assessment criteria by:

- Totaling the scores collected during the assessment criteria development session.
- Allowing your team to distribute a certain number of points between the selected criteria.

Criteria / Name	Adam	Emir	Sara	Zekaria	Total
Cost effective	40	55	20	40	155
Decreased defects	15	20	30	15	80
Increased productivity	40	10	50	30	130
User friendly	5	15	0	15	35
	100	100	100	100	

Example of a Prioritization Matrix Template:

Criteria			Weighted score	Rank
Solution – Option / Weight				

Criteria	Cost effective	Decreased defects	Increased productivity	User friendly	Weighted score	Rank
Solution – Option / Weight						
New equipment 1						
New equipment 2						
New equipment 3						
New equipment 4						

How to Construct and Use a Prioritization Matrix:

- Explain the purpose for constructing the prioritization matrix.
- □ Agree on the items that need to be prioritized.
- Ensure that the criteria and their weightings are set and agreed by all.

- Allow each member to score each item against each criterion.
- □ Calculate the final weighted scores for each item.
- □ Sort the items by their ranks to make them clearer.

Example – Project Selection:

In the example below, the team has to select the most profitable among five candidate projects.

Project Title	Cost \$	Savings \$ (1 st year) X3	Months to complete
Energy reduction	\$36,000	\$43,000	10
Spoilage reduction	\$30,000	\$120,000	12
Reduce strap width	\$5,500	\$11,000	3
Reduce stretch wrap usage	\$7,000	\$4,000	5
Reduce over varnish usage	\$20,000	\$66,000	8

Example – Project Selection:

They agreed that savings should be given a weight of 3 as it is relatively more important than the other criteria.

Project Title	Cost \$	Savings \$ (1 st year)	Months to complete	Weighted score	Rank
Weight		X 3			
Energy reduction	1	3 <mark>X3</mark> = 9	2	12	4th
Spoilage reduction	2	5 <mark>X3</mark> = 15	1	18	1st
Reduce strap width	5	2 <mark>X3</mark> = 6	5	16	3rd
Reduce stretch wrap usage	4	1 <mark>X3</mark> = 3	4	11	5th
Reduce over varnish usage	3	4 <mark>X3</mark> = 12	3	18	1st

Example - Select the Most Efficient Data Collection Method:

Project Title	Cost effective	Response time	Quantity	Weighted score	Rank
Weight	0.4	0.2	0.3		
Questionnaire	4	1	5	3.3	1
Interview	1	4	1	1.5	4
Observation	3	2	2	2.2	2
Focus group	1	4	2	1.8	3

Further Information:

- Prioritization matrix is often used when simple voting is not enough to make an informed decision.
- Pilot studies can be used to check the effectiveness of a solution in practice before full implementation.