
Continuous Improvement Toolkit

Process Mapping

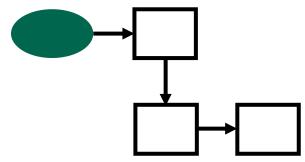
The Continuous Improvement Map

Managing		Deciding & Selecting		Planr	Planning & Project Management*		
Risk PDPC	Decision Bala	ance Sheet Imp	portance-Urgen	cy Mapping <u>[</u>	Daily Planning	PERT/CPM	
FMEA RAID Log*	Force Field Ana	alysis Cos	st Benefit Analys	sis <u>MOST</u>	RACI Matrix	Activity Networks	
Risk Assessment*	Break-even Ana	llysis Voting	TPN Analys	is <u>SWOT</u>	Analysis Sta	keholder Analysis	
Fault Tree Analysis	Decision Tree	Pick Chart F	Four Field Matrix	Project Ch	narter Impro	ovement Roadmaps	
Traffic Light Assessme	nt Critical-to Tree	QFD Po	ortfolio Matrix	PDC	A Policy Deploy	ment Gantt Charts	
Lean Measures K	ano Analysis Matr	ix Diagram Pair	ed Comparison	DMAIC Kaiz	zen Events Co	ontrol Planning	
Bøttleneck Analysis**	Cost of Quality* Pu		tization Matrix	A3 Thinking	Standard work	Document control	
Process Yield	DEE KPIS	areto Analysis	C&E Matrix	erstanding	Cross Training	Implementing	
	Descriptive Statistics	ANOVA Chi-	Sauara	se & Effect	Value Analysis	6-1-11	
	Probability Distribution	ons Hypothesis	Testing Design	gn of Experiment	Mistake Proof	fing Ergonomics	
	stograms & Boxplots	Multi vari Stud	ies Confider	nce Intervals S	imulation TPI	M Automation	
	Graphical Analysis	Scatter Plots	Correlation	Regression	Pull Flow	Just in Time	
Understanding Performance	SA Run Charts	5 Whys Root C		Data Snooping	Visual Manage	ement 5S	
	Control Charts	Fishbone Diagra			Waste Analysis	Quick Changeover	
Data collection planner* Sampling Morphological Analysis How-How Diagram** Process Redesign Time Value Map							
Check Sheets Intervi	ews Brainstorming	SCAMPER**	Attribute Ana	llysis Spaghett	ti Diagram Val	ue Stream Mapping	
Questionnaires Focu	us Groups Affinity	Diagram Re	lationship Mapp	ing* Flow Pr	ocess Charts	Service Blueprints	
Data	Mind	Mapping* Late	eral Thinking	Flowcharting	IDEF0 F	Process Mapping	
Collection Obse	ervations Suggestion	n systems Crea	ating Ideas	Desig	ning & Analyz	zing Processes	

A Process:

- A set of activities that occur in a coordinated manner to achieve a common goal.
- It takes one or more inputs to create an output that is of value to the customer.
- Almost any business operation can be thought of as a process.
- Managing processes is key to the success of any organization.
- Processes can be either production or transactional in nature.

Example:



$$Y = f(x_1, x_2, \dots, x_k)$$

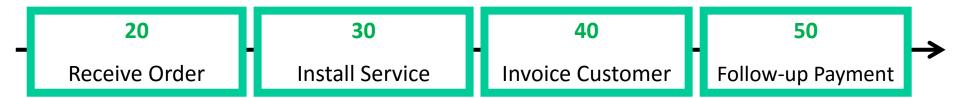
Any Output (Y) is a function of singular or multiple Inputs (X's)

A Process Map:

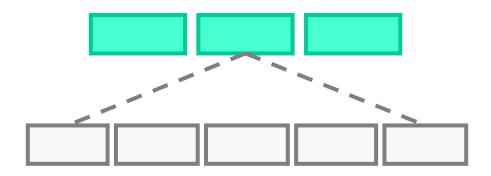
- A graphical representation.
- Illustrates the chronological sequence of activities of a process.
- Represents activities in a step by step manner.
- Provides a mechanism for analyzing and studying processes.
- Helps identifying the inefficiencies and the non-value adding activities.
- Enable the team to agree on the most efficient steps and routes for process improving or re-engineering.

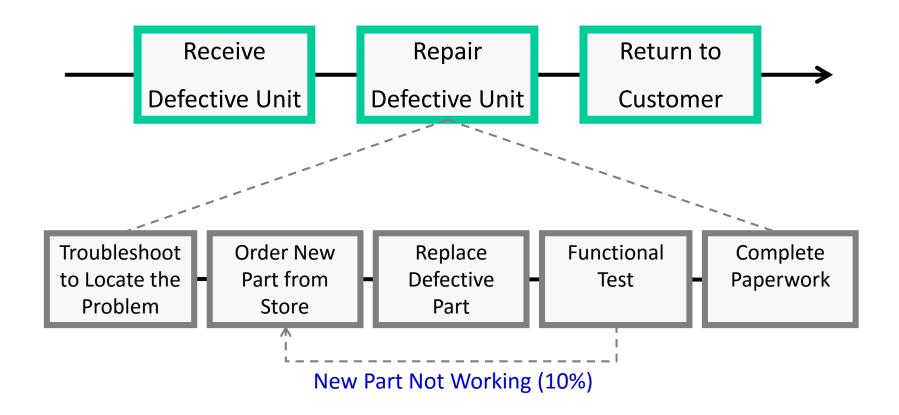
Benefits:

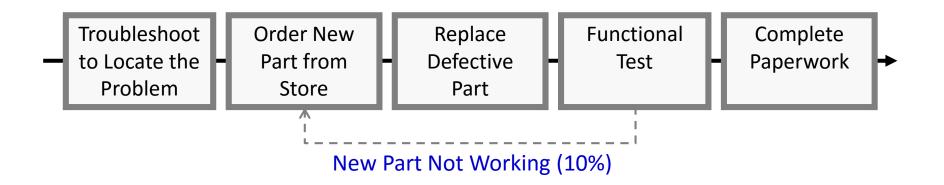
- Enhances the understanding of a process and its steps.
- Helps bring clarity to complex processes.
- Helps simplify, streamline, or redesign processes.
- By understanding and controlling the inputs, it is possible to reduce variation within the process.
- Serves as means to document and communicate business processes.


Often found in training, maintenance, technical and quality manuals

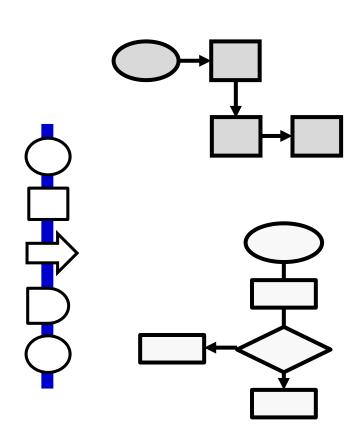
Examples:


Part of a production process:


Part of a transactional process:

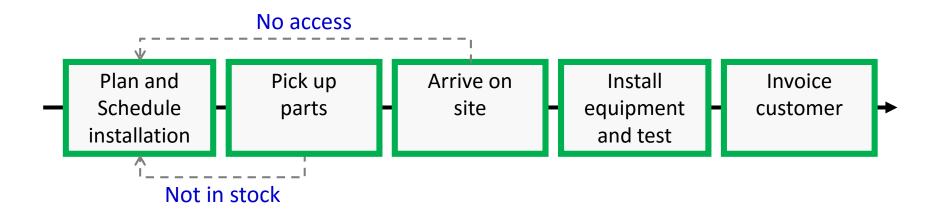

- Process maps can be as complex or as simple as required.
- □ They can describe processes in different levels of details.
- They become complex very quickly.
- Soon you may need to redo the map for clarity.
- A useful approach is to have different levels within the map and only detail the area of interest.

Example - Repairing a Defective Unit:


□ Notice the **rework loop** which occurs when it is discovered (during testing) that the installed part is not working.

Will there be other rework loops or delays in this process?

Mapping Techniques:


- Simple Drawing Process Map.
- Opportunity Process Map.
- SIPOC Map.
- Flowchart.
- Swimlanes Map.
- Flow Process Chart.
- Spaghetti Diagram.
- Value Stream Map.

Mapping Techniques:

Simple Drawing Process Map:

 Only uses boxes to represent activities and arrows to represent moving between activities.

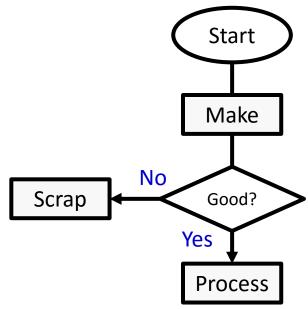
Mapping Techniques:

Opportunity Process Map:

 Includes additional information on whether activities are value-adding or non-value adding.

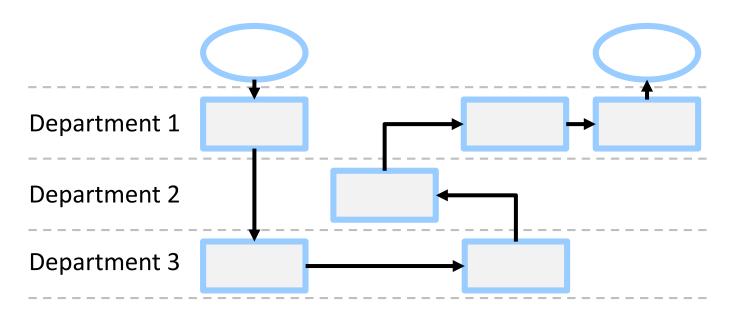
Mapping Techniques:

□ SIPOC Map:


 A high-level summary of the process that lists suppliers, inputs, outputs and customers.

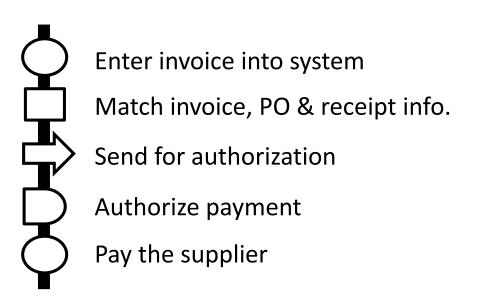
Mapping Techniques:

Flowchart:


 Provides a detailed view of the "should-be" process including decision points.

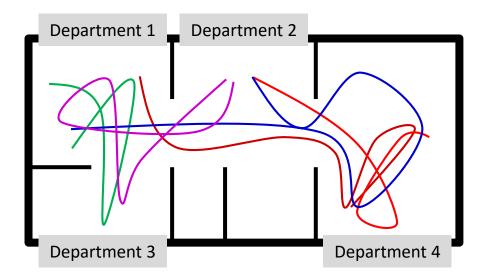
Mapping Techniques:

□ Swimlanes Map:


 Shows process steps performed by different functions or departments.

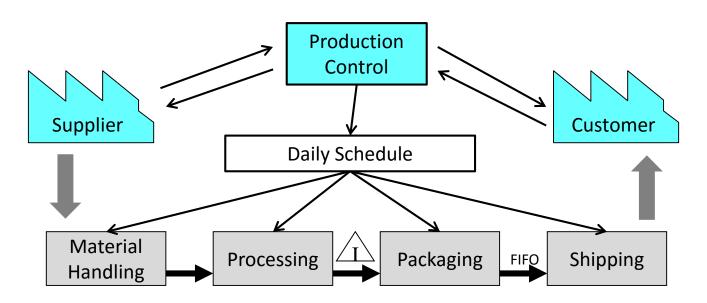
Mapping Techniques:

Flow Process Chart:

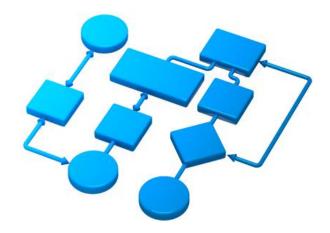

 An easy tool to identify the non-value adding steps including the time taken and the distance traveled per step.

Mapping Techniques:

□ Spaghetti Diagram:

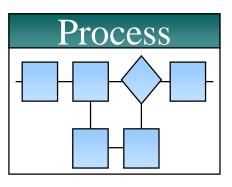

 Depicts patterns of movement of product, material, information and people.

Mapping Techniques:


□ Value Stream Map:

 Used to prioritize improvement opportunities by helping identify bottlenecks, delays and waste.

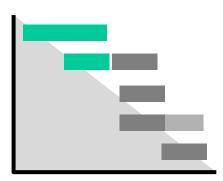
How to Prepare a Process Map:


- □ Gather the team. Involve:
 - Operators.
 - Supervisors.
 - Process experts.
 - Engineers.
 - Quality personnel.
 - You may also call in particular situations external customers and/or suppliers.
- Make sure that everyone is clear on what process is going to be mapped.

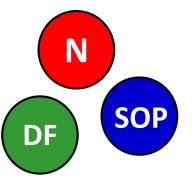
How to Prepare a Process Map:

- Agree on the mapping technique to be used.
- Agree on the level of detail to be displayed.
- Identify the process boundaries.
- Map the 'As-Is' process from beginning to end.
- List input and output variables at each step.
- Classify each input variable as controllable, noise or standard operating procedure.
 - This helps focus on those inputs that are controllable.

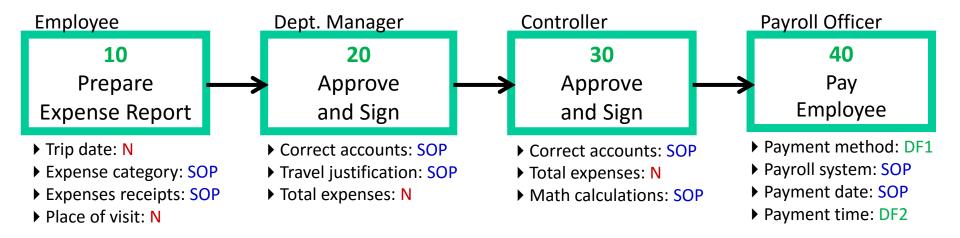
The goal is to find as many sources of variation


How to Prepare a Process Map:

- Notice how the process is actually performed.
- Identify all the areas that hinder the process or add little or no value. Ask questions such as:
 - Are all activities necessary?
 - What is the value of the activity relative to its cost?
 - Are there rework loops where activities are repeated?
 - Could these rework loops be eliminated?
 - What is the cost of the rework in terms of lost time and resources?
 - Are there times when waiting is involved?
 - How can it be reduced?


How to Prepare a Process Map:

- Build the 'Should-Be' process map that corrects the inefficiencies and waste identified earlier.
- Plan and implement actions to reduce variation and waste.



Input Variables are Classified into Three Categories:

- Noise Factors:
 - Uncontrollable, too costly or preferably not controlled.
 - It's good to know how to compensate changes in these factors.
 - Examples: environmental factors.
- Standard Factors (or SOPs):
 - They have been fully standardized and documented.
 - Record and know how often they are out of control.
 - Examples: safety and preventive maintenance factors.
- Design Factors (or Controllable Factors):
 - They can be adjusted and controlled.
 - Example: changing the speed of a machine.



Example – Process an Expense Report:

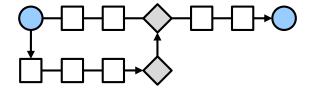
How many controllable sources of variation do we have here that could have an influence on the performance of the process

Example – Making Coffee:

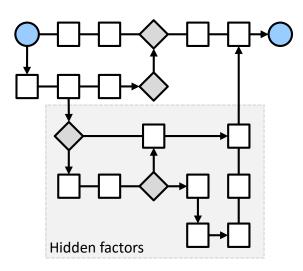
Further Information:

- Continuous improvement would means regular review and optimization of key business processes.
- The preparation of a process map is not a solution in itself, but it opens up the opportunity to simplify, streamline, or redesign the process.
- Process mapping can provide inputs to other continuous improvement techniques such as:
 - Cause and effect analysis.
 - Root cause analysis.
 - Control plans.
 - Capability studies.
 - FMEA.

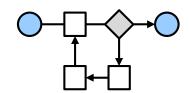
Further Information:


- Input variables could be found in:
 - Operation manuals.
 - Engineering specifications.
 - With the experienced operators.
- Brainstorming sessions are often used to capture these variables.
- A good first step in process mapping is to "walk the process".
- While you walk the process, you also take notes and identify the input and output variables.

Gemba walks is the action of going to see the actual process, understand it, ask questions, and learn

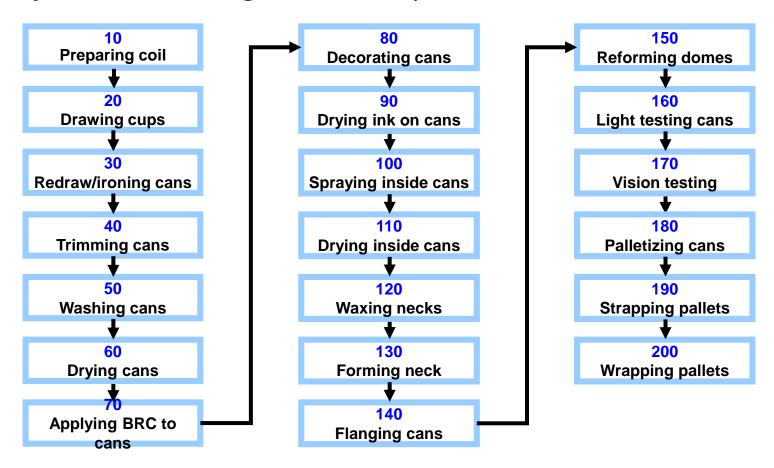

Further Information:

■ What do we think of a process is not necessary what it actually is.


What you think it is...

What it actually is...

What you would like it to be...



Common Process Problems:

- Errors and rework.
- Unnecessary activities and duplication.
- Bottlenecks.
- Long cycle times and excessive delays.
- Missing and unclear steps.
- Too many inspections or checks.
- Complex procedures.
- Departure from procedure.
- Dead ends.
- Costly steps.
- Non-value adding steps.

Example – Can Making Process Map:

