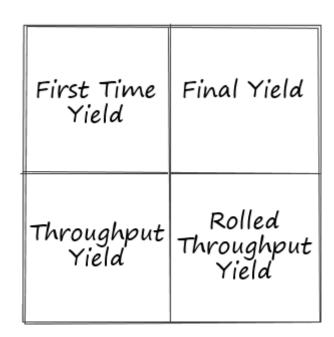

# **Continuous Improvement Toolkit**

#### **Process Yield Measures**

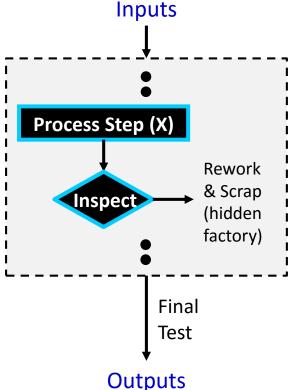



#### **The Continuous Improvement Map**

| Managing                                                                                                   | Decidin                       | g & Selecting                       | Planning & Project Management*               |
|------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------|----------------------------------------------|
| Risk PDPC                                                                                                  | Decision Balance Sheet        | Importance-Urgenc                   | cy Mapping Daily Planning PERT/CPM           |
| FMEA RAID Log*                                                                                             | Force Field Analysis          | Cost Benefit Analy <mark>s</mark> i | MOST RACI Matrix Activity Networks           |
| Risk Assessment*                                                                                           | Break-even Analysis \         | oting TPN Analy <mark>si</mark>     | SWOT Analysis Stakeholder Analysis           |
| Fault Tree Analysis De                                                                                     | ecision Tree Pick Chart       | Four Field Matri <mark>x</mark>     | Project Charter Improvement Roadmaps         |
| Traffic Light Assessment                                                                                   | Critical-to Tree QFD          | Portfolio Matrix                    | PDCA Policy Deployment Gantt Charts          |
| Lean Measures Kan                                                                                          | no Analysis Matrix Diagram    | Paired Comparison                   | DMAIC  Kaizen Events Control Planning        |
| Bøttleneck Analysis**                                                                                      | cost of Quality* Pugh Matrix  | Prioritization Matrix               | A3 Thinking Standard work Document control   |
| Process Yield OE                                                                                           | E KPIs Pareto Analy           |                                     | erstanding Cross Training Implementing       |
|                                                                                                            | scriptive Statistics ANOVA    | Chi-Sauara                          | se & Effect Value Analysis Solutions**       |
| Pr<br>Gap Analysis*                                                                                        | robability Distributions Hypo | othesis Testing Desig               | gn of Experiment Mistake Proofing Ergonomics |
| Histo Reliability Analysis                                                                                 | ograms & Boxplots Multi va    | ri Studies Confiden                 | nce Intervals Simulation TPM Automation      |
| Understanding Gra                                                                                          | aphical Analysis Scatter Pl   | ots Correlation <sub>F</sub>        | Regression Pull Flow Just in Time            |
| Performance MSA                                                                                            | Run Charts 5 Whys             | Root Cause Analysis                 | Data Snooping Visual Management 5S           |
| Benchmarking** Co                                                                                          | ontrol Charts Fishbone        | Diagram Tree Diagra                 | m* SIPOC* Waste Analysis Quick Changeover    |
| Data collection planner* Sampling Morphological Analysis How-How Diagram** Process Redesign Time Value Map |                               |                                     |                                              |
| Check Sheets Interviews Brainstorming SCAMPER** Attribute Analysis Spaghetti Diagram Value Stream Mapping  |                               |                                     |                                              |
|                                                                                                            | Groups Affinity Diagram       | Relationship Mappi                  |                                              |
| Data Collection Observ                                                                                     | Mind Mapping*                 |                                     | Flowcharting IDEF0 Process Mapping           |
| Collection Observ                                                                                          | Suggestion systems            | Creating Ideas                      | Designing & Analyzing Processes              |

- An ideal process must produce without defects or rework.
- You should have the appropriate performance metrics to measure the process yield.
- ☐ These metrics should be able to expose even the smallest inefficiencies in a process.
- □ They should enable operations to understand their true process yield in order to set realistic improvement targets.

- Many companies utilize two measures of process yield:
  - First time yield.
  - Final yield.
- □ They represent the classic approach for calculating process yield.
- They don't account for the hidden factory.

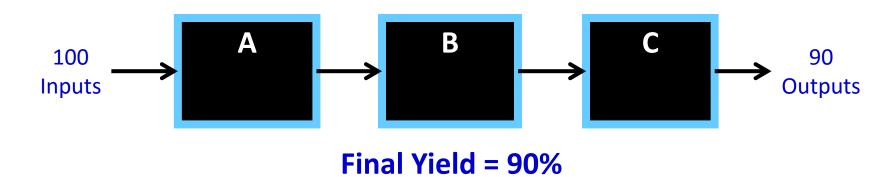



#### First Time Yield (FTY):

 Obtained by dividing the good product or service units (including reworked units) by the number Interest
 of total units that entered the sub-process.

#### Example:

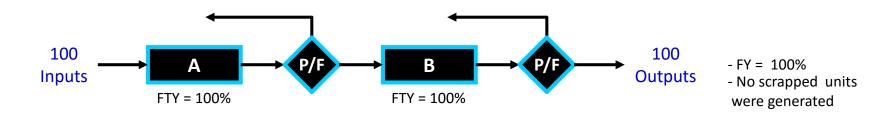
 FTY of an individual sub-process that processed 100 units and produced 90 good units would be 90%.




#### Final Yield (FY):

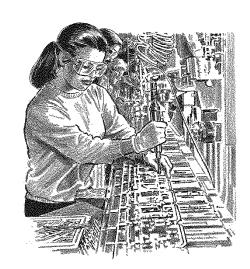
- The probability that a unit will successfully pass all steps assessed at the end of the process.
- Obtained by counting the good units that made it through until the last process step divided by the total number of units that entered the process.
- □ If there are the same amount of units at the end of the process as there were at the beginning, then the final yield would be 100%.

#### Final Yield (FY):


□ Consider the following 3-step process:



Is this the whole story?


#### First Time Yield and Final Yield:

- They don't reflect the actual defect rates and ignore the hidden factory.
- □ They are not sensitive to product complexity.
- They only look at the volume of the produced units.
- Corrective actions are often taken on spot when mistakes are discovered and rework are not recorded in quality logs.
- Process yield rates look better than what they really are.



#### **Throughput Yield (TPY):**

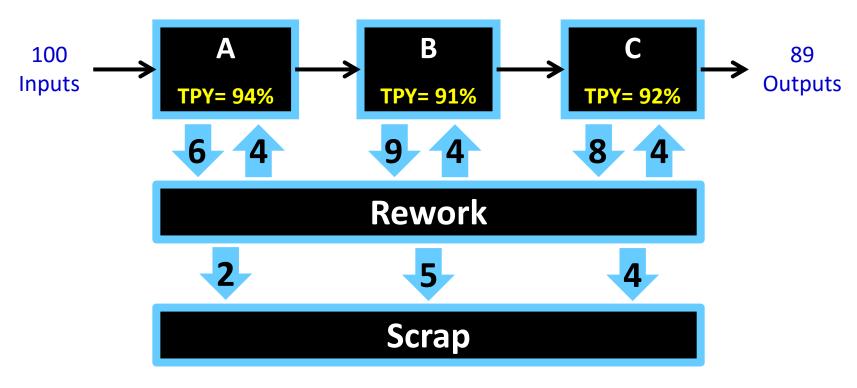
- The probability that all defect opportunities produced at a particular step will conform to their respective performance standards.
- Only considers the good units that passed through a process step right the first time and error-free.



- □ A reworked unit that passed the test is not added to the throughput yield but to the first time yield.
- □ The difference between the two metrics should highlight the quality risk due to rework.
- □ This should lead to the pursuit of process improvement.

#### Rolled Throughput Yield (RTY):

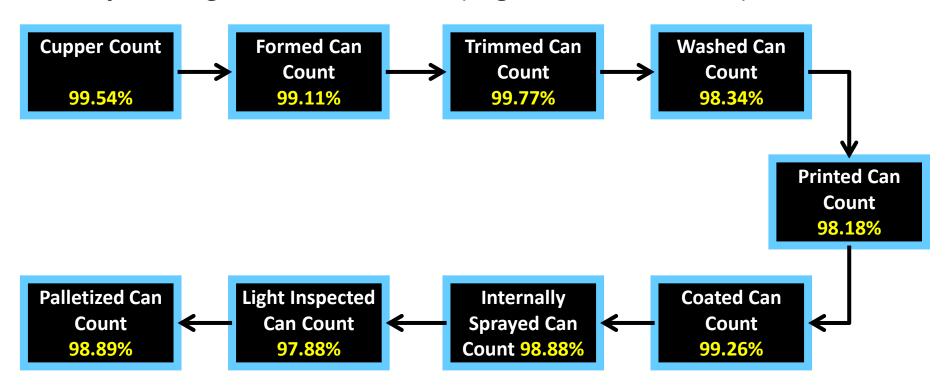
- Represents the probability of passing all performance standards through the entire process defect-free.
- It is calculated by multiplying the individual throughput yield values of each process step:


RTY = Throughput Yield of process step 1 \* Throughput Yield of process step 2 \* ... \* Throughput Yield of process N.

#### **Rolled Throughput Yield:**

- Quantifies the cumulative effects of inefficiencies found throughout the process.
- Provides a better insight of the rates of errors and rework.
- Allows companies to be much more accurate when assessing the performance of their industrial or commercial processes.
- Calculations are done at each process step.
- Substantially less than final yield.




**Example** – Low Complexity Process:



RTY = TPY(A) \* TPY(B) \* TPY(C) = 94% \* 91% \* 92% = 78.7%

RTY is a true reflection of the process performance

**Example** – High Volume Process (High Volume Process):



RTY = 90.28%

The probability of manufacturing a can that meets all specs is 90.28%

**Example** – High Volume and Low Complexity:

- What is the RTY of a process that involve 5 steps and produces 30,000 units per hour, knowing that the throughput yield for each process step is 95%?
- $\square$  RTY =  $(0.95)^5 = 77.4\%$ .
- □ Throughput Yield per hour = 0.7738 \* 30,000 = 23,213 TPY per hour.
- □ i.e. 6787 non-conforming units per hour (22.6%).

**Example** – Low Volume and High Complexity:

- What is the RTY of a process that involves 30 steps and produces 10 units per hour, knowing that the throughput yield for each process step is 95%?
- $\square$  RTY =  $(0.95)^{30}$  = 22.5%.
- □ Throughput Yield per hour = 0.2146 \* 10 = 2.15 TPY per hour.
- □ i.e. 8 non-conforming units per hour (77.4%) and only 21.5% will be shipped without rework.

#### **Further Information**

- Using of a process map as a guide in the process yield evaluation is a good practice and can be very helpful.
- Throughput yield is sensitive to the number of critical-to-quality characteristics (CTQs) in a product (product complexity).
- Rolled throughput yield is sensitive to the number of CTQs, the effectiveness of the process, and the number of process steps (process complexity).
- Simplification of the process needs to be considered to improve the process yield rate.