# Continuous Improvement Toolkit

**Regression** (Introduction)



Managing **Deciding & Selecting Planning & Project Management\* Pros and Cons PDPC** Risk Importance-Urgency Mapping RACI Matrix Stakeholders Analysis Break-even Analysis **RAID Logs FMEA** Cost -Benefit Analysis **PEST** PERT/CPM **Activity Diagram** Force Field Analysis Fault Tree Analysis **SWOT** Voting Project Charter Roadmaps **Pugh Matrix Gantt Chart** Risk Assessment\* Decision Tree **TPN Analysis PDCA Control Planning** Matrix Diagram Gap Analysis **OFD** Traffic Light Assessment Kaizen **Prioritization Matrix** Hoshin Kanri Kano Analysis How-How Diagram **KPIs** Lean Measures Paired Comparison Tree Diagram\*\* Critical-to Tree Standard work **Identifying &** Capability Indices **OEE** Pareto Analysis Cause & Effect Matrix Simulation TPM**Implementing** RTY Descriptive Statistics **MSA** Confidence Intervals Understanding Mistake Proofing Solutions\*\*\* Cost of Quality **Cause & Effect** Probability Distributions ANOVA Pull Systems JIT **Ergonomics Design of Experiments** Reliability Analysis Graphical Analysis Hypothesis Testing Work Balancing Automation Regression Bottleneck Analysis Visual Management Scatter Plot Correlation **Understanding Run Charts** Multi-Vari Charts Flow Performance 5 Whys Chi-Square Test 5S **Control Charts** Value Analysis Relations Mapping\* Benchmarking Fishbone Diagram **SMED** Wastes Analysis Sampling **TRIZ**\*\*\* Process Redesign Brainstorming Focus groups Time Value Map **Interviews** Analogy SCAMPER\*\*\* IDEF0 Nominal Group Technique SIPOC Photography Mind Mapping\* Value Stream Mapping **Check Sheets** Attribute Analysis Flow Process Chart Process Mapping Affinity Diagram **Measles Charts** Surveys Visioning **Flowcharting** Service Blueprints Lateral Thinking **Data** Critical Incident Technique Collection **Creating Ideas\*\* Designing & Analyzing Processes Observations** 

Continuous Improvement Toolkit . www.citoolkit.com

- **Regression** (& Correlation) is used when we have data inputs and we wish to explore if there is a relationship between the inputs and the output.
  - What is the strength of the relationship?
  - Does the output increase or decrease as we increase the input value?



- □ Given multiple inputs, we can determine which inputs have the biggest impact on the output.
- □ Once we have a model (regression equation) we can **predict** what the output will be if we set our input(s) at specific values.



□ Regression is a statistical forecasting model that is concerned with describing and evaluating the relationship between variables.



- □ It is the process of developing a mathematical **model** that represents the data.
- □ It provides an equation or model to describe the relationship between two (or more) variables.
- □ This regression equation can be used to predict future events.

### **Two Types:**

- **□** Simple Regression:
  - We have only one explanatory variable.
  - The regression process can fit several shapes of line:
    - Linear.
    - · Quadratic.
    - · Cubic.
- **□** Multiple Regression:
  - We may be interested in tow or more explanatory variables.



- □ It mathematically defines the relationship between the **explanatory** variable (X) and the **response** variable (Y).
- □ The regression process creates a line that best resembles the relationship between the process input and output.
- ☐ The best line is found by ensuring the errors between the data points and the line are minimized.



□ All straight lines can be expressed as:

$$\mathbf{Y} = \mathbf{\beta}_0 + \mathbf{\beta}_1 \mathbf{x}$$

- $\mathbf{Y} \rightarrow$  The response variable.
- $X \rightarrow$  The explanatory variable.
- $\beta 0 \rightarrow$  The intercept (The value of Y when x=0).
- $\beta 1 \rightarrow$  The slope (The impact of the explanatory variable on the response variable).

- ☐ The distances between the points and the regression line are called residuals.
- ☐ They represent the portion of the response that is not explained by the regression equation.



□ Residuals (which are also referred as errors) must be encountered in the regression equation:

$$\mathbf{Y} = \mathbf{\beta}_0 + \mathbf{\beta}_1 \mathbf{x} + \mathbf{\varepsilon}$$

### **Approach:**

- Collect random data.
- Create a scatter plot to check the relationship between the variables.
- Use correlation to quantify the strength and direction of the relationship.
- □ Use regression to develop an equation to describe the relationship.



$$Y=f(x)$$

#### The Process:



- With a linear relationship, we can use correlation and regression to evaluate the data.
- □ Sometimes the pattern is nonlinear.
- We need to use other advanced tools to evaluate the data.
- □ Such analysis tools are beyond the scope of this training.





### **Example:**

□ Suppose that we conduct an experiment to examine the relationship between the vehicles sales price and the mileage.



- □ After we collected random data, we want to know how car mileage influence sales price.
- Which is the explanatory variable?

The mileage is the explanatory variable and sales price is the response variable.

| Mileage | Sales Price     |
|---------|-----------------|
| 9980    | 19999           |
| 35000   | 17799           |
| 26870   | 19009           |
| 42100   | 16899           |
| 34200   | 18799           |
| 25056   | 18799           |
| 34212   | 17999           |
| 43070   | 17899           |
| 12431   | 20019           |
| 46221   | 16099           |
| 29000   | 18699           |
| 10007   | <b>√</b> -4cood |

### **Example:**

- We can see from the scatter plot that the variables are related.
- □ The Correlation between the variables is moderate to high negative (r = -0.79).
- □ As mileage increases, sales price of the car decreases.
- Using a statistical analysis, we can determine the regression model:



Sales Price = 21.015 - 0.0874 x Mileage +  $\varepsilon$ 

### **Example:**

Sales Price = 
$$21,015 - 0.0874$$
 x Mileage +  $\varepsilon$ 

■ Use the regression equation above to predict what is the price of a vehicle when the mileage equals to 20,000?

□ **Answer:** It will sell for about \$19,267.



### **Example:**

- We will use **R-Sq** to measure how much variability in the response is explained by the explanatory variable.
- □ As the points get closer to the regression line, R-Sq increases.

```
Regression Analysis: Sales Price versus Mileage
The regression equation is
Sales Price = 21015 - 0.0874 Mileage
Predictor
               Coef
                      SE Coef
Constant
            21014.6
                        246.3
                                85.31
          -0.087354 0.006860 -12.73 0.000
Mileage
S = 537.537
             R-Sq = 79.0 R-Sq(adj) = 78.6
Analysis of Variance
Source
                         SS
Regression
                1 46855610
                             46855610 162.16 0.000
Residual Error 43 12424661
                               288946
Total
               44 59280271
```

- □ The moderately high R-Sq value indicates that mileage greatly affect the sales price.
- □ However, other factors such as the condition of the car or its color may also influence the sales price.

#### The R2 Value:

$$R^2 = 1 - \frac{\sum e_i^2}{\sum (y_i - \overline{y})^2}$$

$$0 \le R^2 \le 1$$

- $\square$  R2 > 0.9
- $\Box$  0.7 < R2 < 0.9
- $\square$  R2 < 0.7

Model can be used with full confidence.

Model can be used carefully.

Do not use the model.

### **Other Examples:**

- □ The relationship between the height and the width of the man.
- □ The relation of the number of years of education someone has and that person's income.
- ☐ The relationship between the downtime of a machine and its cost of maintenance.







#### What About Attribute Data?

#### Response (Y)

|             |           | Variable   | Attribute            |
|-------------|-----------|------------|----------------------|
| Explanatory | Variable  | Regression | Logistic Regression  |
| (Xs)        | Attribute | ANOVA      | Contingency<br>Table |

#### **Examples:**

- Regression (Hardness of an alloy vs. its temperature).
- □ ANOVA (Shooting distance and ball material).
- □ Logistic reg. (% of discolored welds vs. current in welding process).
- □ Contingency Table (Process yield vs. Tool type).

#### **Furthers Considerations:**

- □ The Null and Alternative hypotheses must be clearly stated before the data is examined (or even collected).
- □ This hypotheses tests whether X can be considered a meaningful predictor of Y.

### The Null Hypothesis → There is no relationship between X & Y.



### **Furthers Considerations:**

□ Prediction and confidence intervals.



|              | Regression |
|--------------|------------|
| <b> </b> — — | 95% CI     |
|              | 95% PI     |
| S            | 2071.48    |
| R-Sq         | 62.0%      |
| R-Sq(ac      | lj) 60.8%  |

#### **Further Information:**

- □ For our regression model to be valid, we must be sure that the residuals can be explained by random error in the process.
- □ We must test the following assumptions:
  - The errors are random (each error is independent of each other error).
  - The errors are normally distributed with mean zero.
  - The errors variance does not change for different levels of x.



#### **Further Information:**

- □ Always perform a MSA before you do a regression because the measurement error will affect your R-Sq and the quality of your model.
- You should not use the model beyond the bounds of the data used to create it.
- In reality, the result of a process is rarely relationship with one input variable but instead more complex results of several factors.
- Forecasts must always be constantly compared with actual outcomes, and the effectiveness of the forecast reviewed.
- Only do the regression if it adds value.