Continuous Improvement Toolkit

SMED

Managing **Deciding & Selecting** Planning & Project Management* **Pros and Cons PDPC** Risk Importance-Urgency Mapping RACI Matrix Stakeholders Analysis Break-even Analysis **RAID Logs FMEA** Cost -Benefit Analysis **PEST** PERT/CPM **Activity Diagram** Force Field Analysis Fault Tree Analysis **SWOT** Voting Project Charter Roadmaps **Pugh Matrix Gantt Chart** Risk Assessment* Decision Tree **TPN Analysis PDCA Control Planning** Matrix Diagram Gap Analysis **OFD** Traffic Light Assessment Kaizen **Prioritization Matrix** Hoshin Kanri Kano Analysis How-How Diagram **KPIs** Lean Measures Paired Comparison Tree Diagram** Critical-to Tree Standard work **Identifying &** Capability Indices **OEE** Cause & Effect Matrix Pareto Analysis Simulation **TPM Implementing** RTY Descriptive Statistics **MSA** Confidence Intervals Understanding Mistake Proofing Solutions*** Cost of Quality **Cause & Effect** Probability Distributions ANOVA Pull Systems JIT **Ergonomics Design of Experiments** Reliability Analysis Graphical Analysis Hypothesis Testing Work Balancing Automation Regression Bottleneck Analysis Visual Management Scatter Plot Correlation **Understanding Run Charts** Multi-Vari Charts Flow Performance 5 Whys Chi-Square Test 5S **Control Charts** Value Analysis Relations Mapping* Benchmarking Fishbone Diagram **SMED** Wastes Analysis Sampling TRIZ*** Time Value Map Process Redesign Brainstorming Focus groups **Interviews** Analogy SCAMPER*** IDEF0 Value Stream Mapping Photography Nominal Group Technique **SIPOC** Mind Mapping* **Check Sheets** Affinity Diagram Attribute Analysis Flow Process Chart Process Mapping Measles Charts Surveys Visioning **Flowcharting** Service Blueprints Lateral Thinking Data Critical Incident Technique Collection **Creating Ideas** Designing & Analyzing Processes Observations**

Continuous Improvement Toolkit . www.citoolkit.com

Familiar Terms?

- □ SMED:
 - Have you participated in a SMED activity before?
- □ Lean:
 - Do you know what is Lean?
- **□** Changeover:
 - Are you involved in changeovers?

- □ Stands for: "Single Minute Exchange of Dies".
- Activities designed to reduce and simplify changeovers.
- SMED is one of the many Lean methods for reducing waste in manufacturing processes.
- □ SMED is a philosophy where the target is to reduce changeover time to few minutes.

"Single Minute" means:

Necessary changeover time is counted on a single digit.

Why "Exchange of Dies"?

Toyota found that the most difficult tools to change were the dies on the large transfer-stamping machines that produce car vehicle bodies.

History of SMED:

- □ Shigeo Shingo was the originator of SMED system at Toyota in the 1970s.
- Toyota reworked factory fixtures and vehicle components to maximize their common parts and standardize assembly tools and steps, and utilize common tooling.
- □ These standardized steps reduced change-over time from 3 hours to 3 minutes.

Changeover:

□ The time between the last good piece of one run at production speed, and the first good piece of the next run at production speed.

Steps to Changeover:

Changeover times causes productivity loss

Typical Change Over Activity:

Why Reduce Changeover Time?

- ☐ In the past, customer demands were for large volumes of the same product.
- □ Now, the current trend is moving towards smaller batches.
- ☐ If changeover time is not reduced, it will not be possible to produce the same volume in the same period of time.

Changeover vs. Maintenance:

- □ **Changeover** is The removal/replacement/adjustment of alternative part(s).
- **Maintenance** is: The removal/replacement/adjustment of the same part(s).

Good changeover practice equates to good maintenance practice

Why Reduce Changeover Time?

CUSTOMER DEMAND

Example – An Illustration of a Demanding Marketplace:

□ Year 2000 47 billion items / Year (2 brands)

□ Year 2004 24 billion items / Year (> 100 brands)

□ Year 2007 Factory was closed.

Benefits:

Benefits:

- Increases Productivity (or reduce production time):
 - Shorter changeovers reduce downtime and Increase machine capacity.
 - Which means a higher equipment productivity rate and an increase in profit.
- **□** Increases Flexibility:
 - Meet the demands of the growing market and the changing customer needs.
 - Diversified product options.

Benefits:

Quicker Delivery:

• Small lot production means less lead time and less customer wait time.

□ Improves Quality:

- Quick changeovers lower defects by reducing set-up errors and trial runs of the new product.
- This will improve customer satisfaction and retention.

Benefits:

- **□** Increases Safety:
 - Planned and simpler changeovers decrease confusion.
- **■** Improves Process Flow (stockless production):
 - Reduce inventory levels which leads to reduction in working capital.
 - Reduce batch sizes.
 - Reduce WIPs.

Other Benefits:

- Reduces waste in materials and parts.
- □ Increases worker utilization.
- Set-Up becomes easier which leads to operator's satisfactory.
- □ Lowers skills requirements since changes are now designed into the process.

□ Improves workplace organization.

Organizations Need to Become Leaner:

Customers are demanding:

Organisations must:

Product diversity,

Expand the diversity of products.

Lower cost,

So

Remove waste in materials & parts.

Higher quality & reliability,

Reduce quality defects.

Can We Reduce Changeover Time?

Formula Racing

Another Automotive Example:

Chain
45 minutes
1.5 minutes

Wheel
30 minutes
13 seconds

Wiring

5 hours

9 minutes

Pads

30 minutes

15 seconds

Progression of Changeover Improvements:

- **Rapid Changeovers:** Term evolved for non-stamping industries (since SMED was developed in the stamping industry).
- **Zero Changeovers:** The pursuit of changeovers in any industry taking (3) minutes or less.
- □ **Single Breath Changeovers:** The pursuit of perfection.

Who Should Be Involved in SMED Program?

- □ Line operators and maintainers.
- □ Line supervisors and group leaders.
- Changeover team leaders.
- Process and line engineers.
- Technical and maintenance personnel.
- □ Commercial and quality personnel.
- Employees of supporting services.

Roles of the team leader:

- □ Represents the team.
- Ensures the team challenge is clearly understood by all team members.
- Motivate the team to meet the targets.
- □ Allocate individual tasks to team members.
- Resolve conflicts.
- Present the status and results to management.
- Convey the feedbacks from management to team members.

Two Objectives of SMED:

- Reduce Time:
 - Reduce changeover and adjustment times to few minutes
- **□** Reduce Complexity:
 - Not only we are looking for faster changeovers, but also to a higher quality changeovers

Reduce Time:

Reduce Complexity:

Simplification of the changeover activities leads to reduce both time and effort.

- □ **Repeatability:** Few options and standard results.
- □ **Reproducibility:** Same performance by all persons.
- □ **Ensured quality:** No compromise, fewer checks.
- **Ensured safety:** No compromise, ergonomical and symmetrical movements.

■ **Reduced time:** Quicker and manufacturing scheduling flexibility.

Complexity & Variability

Time

DESIGN TECHNIQUES

Alter WHAT tasks occur

ORGANISATION TECHNIQUES

Alter WHEN tasks occur

Reduce Complexity:

- Reduce activity count.
- Reduce activity difficulty.

Reduce Variability:

- Standardize work practices.
- Standardize physical entities.

Optimize Task Sequence:

- Optimize tasks to resources.
- Optimize resources to tasks.

Design considerations:

- Cost/benefit analysis.
- Internal rules.
- ☐ The design rules.
- Implementation time and difficulty.
- □ Skills required.
- □ Impact on the run-up.
- Impact on the product quality.
- ☐ Impact on safety.
- Sustainability.

Some Design Ideas:

- □ Reduce variability.
- Precision fixed locations.
- Pre-setting devices.
- Clamping/securing devices.
- Quick release fasteners.
- □ Less tools and parts.
- □ Foolproof (no skill).
- Better access.
- Modularization.
- Standardization and universality.
- Movement and handling aids.
- Automation and Mechanization.

"Do better things"

Some Design Ideas:

- Simplify fittings and tightening.
- □ Minimize turning movements which request several grasp-release motions. Aim to fit at once in a single motion.
- Use shims and spaces to reduce the distance machine components need to move.
- □ Standardize types and size of parts and tooling (screws, nuts, bolts, etc.) based on commonality between changeovers. This will reduce the number of setup steps.
- □ Fabricate equipment improvements.
- □ Use technology and new tooling.

Some Design Ideas:

□ Look for:

- Any attachment points that take more than one turn to fasten.
- Unheated molds which require several wasted tests before they will be at the temperature to work.
- Inadequate or incomplete repairs to equipment causing rework and delays.
- Mistakes or inadequate verification of equipment causing delays.
- Using devices to help in detecting errors.

Example of One Step Fastening

This clamp attachment requires one step to attach the die to a machine

What Other Type of Attachment Devices That Can Be Used?

- □ Toggle clamps.
- □ Cam action clamps.
- □ Auto clamps (including mistake proofing devices).
- □ Hook clamps.
- Quick acting clamps.
- □ Swing "C" washers.
- Swing bolts.
- Quarter turn screws.
- Wedges.

Some Design Ideas:

U-shaped washers

Split thread bolts

Sustainability:

- Changeover gains are not necessarily easily sustained.
- Emphasis on design would help achieve sustainability.

Typical Causes for Delays in Changeovers:

- □ Waiting.
- Searching.
- Missing tools / tooling.
- Lack of calibration.
- Poor schedule information.
- □ No checklist.
- Moving slowly.

The 4 Steps to Reduce the Changeover Time:

- 1. Observe and measure.
- 2. Separate internal and external activities.
- 3. Convert internal to external activities.
- 4. Streamline, improve and standardize.

STEP1: Observe and Measure:

- □ The aim is to record data about the way people work during changeover.
- □ Data need to be collected in order to analyze the changeover accurately.
- Production plan and schedule should be followed.
- Changeover operators should do the first changeover as normal.
- Analysis of changeover procedures using videotapes.
- Study the video in detail noting the time and motions involved in each stage.
- □ Record improvement ideas.

STEP1: Observe and Measure:

- What is the problem?
- What is the target?
- What is the current changeover time?
- What time can we get it down to?
- What are the activities needed to perform the changeover?
- What is the actual average time length per activity?
- Who will participate in the team?

STEP1: Observe and Measure:

- □ Establish Roles:
 - C/O Leader & C/O Team.
 - Time Keeper.
 - Cameraman.
 - SOP Observer.
 - Safety Observer.
 - Time Waste Observer.

First Changeover:

- □ Prepare the team for the changeover who does what?
 - Cameraman: Follow the main activity.
 - Time keeper: Record time for each activity using stop-watch and the total cumulative time as well.
- Make sure a clear signal is given to the time keeper as to when changeover starts (when the machine runs down).

First Changeover:

- □ The observation sheet is a document to be used by the time keeper.
- □ It's used to record both time and activity during the observation of the changeover.

OBSERVATION SHEET									
Time keeper:		Date:	Changeover:	Changeove					
Notes	Accumulative	Time	No Changeover activity	No					
			Total						
			Total						

□ After performing the first changeover, the team needs to meet again to review the video and the observation sheet.

Changeover Wall Chart										
Activity										
First changeover date/time										
Internal?										
External?										
Ideas to improve										
Change in SOP?										
Next changeover date/time										
Standard/Benchmark										

STEP2: Separate Internal and External Activities:

□ Aim: Separate activities which can be done while the machine is running from those which must be done after it is switched off.

□ External Activities:

- Can be conducted while the machine is operating.
- Examples:
 - Finding tools and transportation of tools and parts.

□ Internal Activities:

- Can only be performed when the machine is stopped.
- Example:
 - Changing tools and dies.

STEP2: Separate Internal and External Activities:

- Emphasize that tools should be found before the machine is switched off.
- Isolate individual activities then sort them sequentially.
- Separate them into internal and external activities.
- □ Reduce useless and non-value activities.
- Reduce adjustments and trials as much as possible
- □ Get it right the first time.

STEP2: Separate Internal and External Activities:

STEP2: Separate Internal and External Activities:

□ Use Changeover Wall Chart to divide changeover into activities which need to be separated into internal and external

activities.

Element			100			Time
Time						
Internal		E				
External						
Ideas to improve	ii.	1			8	
New time						

STEP3: Convert Internal to External Activities:

- Analyze each internal activity to determine whether or not it can be converted into external.
- Do as much as we can before the machine is switched off and after the machine has been turned on again.
- □ You might need to restructure the changeover or setup procedure.
- Or apply process innovation or technology.
- The SOP should then be adjusted.

STEP4: Streamline, Improve and Standardize:

- □ The aim is to reduce the internal and external activity time and streamline the changeover process.
- □ Discuss each activity on the wall chart.
- □ To prioritize efforts, you might need to carryout a Pareto Analysis.
- □ It might be necessary to go on the gemba and work with other departments.

Safety should never be compromised in the effort to reduce changeover time.

STEP4: Streamline, Improve and Standardize:

- □ Eliminate wasteful, unnecessary & redundant activities.
- Eliminating both in internal and external non-value activities to reduce overall setup time.
- □ Identify and eliminate wasted motions and movement around the machine.
- Eliminate all mechanical and physical variation.
- Reduce adjustments as possible.
- ☐ Implementing parallel activities as possible.

Eliminate All Waste

STEP4: Streamline, Improve and Standardize:

- ☐ Implementing parallel activities as possible.
- ☐ It's possible to optimize setup time by implementing parallel operations using multiple operators.
- Effective communication is a must to ensure safety is assured where potentially noise or visually obstructive condition occur.

STEP4: Streamline, Improve and Standardize:

- Analyze and minimize all setup tools and fasteners.
- Standardize tools, types and size of screws, nuts, bolts, etc.
- □ Use jigs and templates.
- □ Put tools and supplies close by and in an organized manner.

Reduce and standardize tools

- Implement design techniques to reduce setup time.
- □ Improve storage and transportation of parts and tools.

Are the current improvement tools sufficiently capable?

STEP4: Streamline, Improve and Standardize:

Before

Tools should be available before machine is shutdown for changeover and should not put away until the machine is started for the next product

After

STEP4: Streamline, Improve and Standardize:

- ☐ Improve both internal and external activities.
- □ Aim to make all activities instantaneous with no effort.
- □ Aim to prepare operating conditions in advance.
- Minimize internal and external time by:
 - Improving arrangement of activities.
 - Organizing the workplace.
 - Improving attachment operations.
 - Reducing or eliminating adjustments.
 - Reducing any use of experts during the changeover.

STEP4: Streamline, Improve and Standardize:

- □ Standardize activities and organization.
- □ Document improvements and develop procedures.
- Develop standard checklists including tools and specifications.
- □ All activities should be sustained.
- Achieve visual management.
- □ Implement 5S.

5S:

- □ 5S are activities designed to create and maintain a disciplined workplace.
- □ 5S will provide a standard conditions in the workplace allowing an changeovers to be faster and more reliable.

Changeover Procedure Example:

• The target is to permanently reduce the average changeover time and set standards to sustain the improvement.

What time can we get it down to?

- What is the problem?
- What is the target?
- What is the current changeover time?
- What time can we get it down to?
- What are the activities needed to perform the changeover?
- What is the actual average time length per activity?
- Who will participate in the team?

Example of Performance Activities:

Preparation ? minutes

• Pre-meeting ? minutes

• Clean fountains ? minutes

• Wash up cleaning ? minutes

• Stop machine ? minutes

Remove cylinders ? minutes

Add new inks ? minutes

Put new cylinders ? minutes

Run machine ? minutes

Registration ? minutes

Color adjustment ? minutes

Total actual changeover time

= 40 minutes

Remember:

- Data need to be collected in order to analyze the changeover correctly.
- Persons carrying out the changeover should always be the same as far as is possible.
- Production plan and schedule should be adopted.

Who else?

Think of:

- Can we externalize activities?
- Some items take a long time because they are complex, can we simplify them?
- Can we re-design to eliminate activities?
- Can we combine activities so they can be done quicker?
- Can we perform tasks in parallel?
- Can we reduce the amount of time taken in any way?
- How can we create a more disciplined workplace in which changeovers are faster and more reliable?

Second Changeover:

What's Next:

- A new Standard Operating Procedure(SOP) must have been developed and agreed by the shop floor people.
- The team should develop a continuous improvement action plan.
- The team should put what was taken from the workshop into practice.
- The team may conduct some practice runs to be more comfortable with the new practices.
- Continuous evaluation and exploration of further improvements is absolutely necessary.

Practice Makes perfect

Post-workshop Improvement Action Plan:

- The action plan should be validated by the management.
- The team leader should ensure that the action plan is properly implemented within the agreed timescale.

IMPROVEMENT ACTION PLAN										
Changeover:			Update: Controlled			ed by:				
Action	Priority	Category	Resp.	Week1	Week2	Week3	Week4	Week5	Week6	

Categories: Organizational action, Technical improvement, Training or Resources

Priorities: 1: during the workshop, 2: after 6 weeks, 3: after 12 weeks, 4: more than 12 weeks (capital expenditure)

Date:								
Area/Dep:	artment	Machine/Equip	ment Name	Set-up To	ols Required	Operator Number	Standard S	et-up Time
						Date Prepared	Minutes	
	CURRENT PROCESS			NT TIME	IMPE	ROVEMENT	PROPOSE	
NO.	Task/Operat	ion	Internal	External			Internal	External
	C	urrent Total:				Improve Total		

Training Summary:

- SMED helps achieve higher productivity, greater flexibility, and higher throughput.
- □ SMED needs to be treated as a constant improvement program.
- □ SMED is a tool which will allow us to focus on eliminating waste.
- □ The causes of wastes will be systematically detected, analyzed and eliminated.
- □ SMED needs to be treated as a constant improvement program.
- □ Continuous evaluation and exploration of further improvements is absolutely necessary.
- Practice makes perfect.

Reference:

Productivity Press:

ISBN 0-915299-03-8

