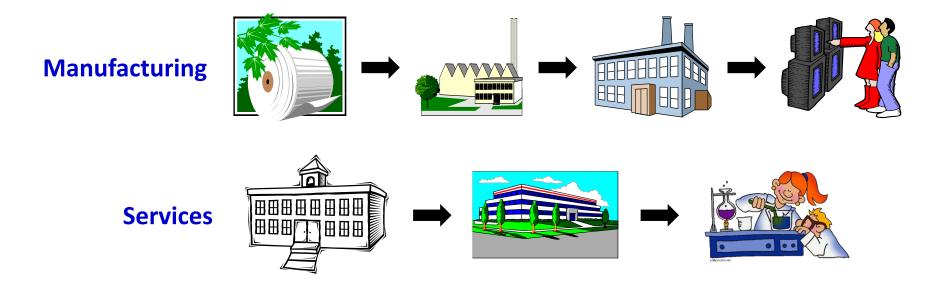
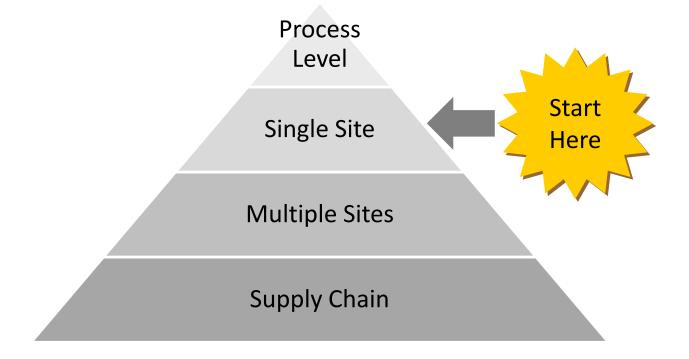

Continuous Improvement Toolkit


The Continuous Improvement Map

Managing		Deciding & Se	electing	Plann	ing & Project	: Management*
Risk PDPC	Decision Bala	nce Sheet Imp	portance-Urgency	y Mapping D	aily Planning	PERT/CPM
FMEA RAID Log*	Force Field Ana	llysis Cos	st Benefit Analy <mark>si</mark>	s <u>MOST</u>	RACI Matrix	Activity Networks
Risk Assessment*	Break-even Ana	lysis Voting	TPN Analysis	SWOT A	Analysis Sta	keholder Analysis
Fault Tree Analysis	Decision Tree	Pick Chart F	Four Field Matrix	Project Ch	arter Impro	vement Roadmaps
Traffic Light Assessmen	nt Critical-to Tree	QFD Po	ortfolio Matrix	PDC	A Policy Deploy	ment Gantt Charts
Lean Measures K	ano Analysis Matr	x Diagram Pair	ed Comparison	DMAIC Kaiz	en Events Co	ontrol Planning
Bøttleneck Analysis**	Cost of Quality* Pu		tization Matrix	A3 Thinking	Standard work	Document control
Process Yield	DEE KPIs Pa	areto Analysis	C&E Matrix Unde	erstanding	Cross Training	Implementing
	escriptive Statistics	ANOVA Chi-	.Sauara	se & Effect	Value Analysis	Solutions**
	Probability Distribution	ns Hypothesis	Testing Design	n of Experiment	Mistake Proof	ing Ergonomics
His	tograms & Boxplots	Multi vari Stud	ies Confiden	ce Intervals Si	mulation TPN	Automation
Reliability Analysis Understanding	Graphical Analysis	Scatter Plots	Correlation F	Regression	Pull Flow	Just in Time
Performance MS	SA Run Charts	5 Whys Root C	ause Analysis ျ	Data Snooping	Visual Manage	ement 5S
Benchmarking**	Control Charts	Fishbone Diagra	m Tree Diagrai	m* SIPOC*	Waste Analysis	Quick Changeover
Data collection planner* Sampling Morphological Analysis How-How Diagram** Process Redesign Time Value Map						
Check Sheets Interview	ews Brainstorming	SCAMPER**	Attribute Analy	ysis Spaghett	i Diagram Val	ue Stream Mapping
Questionnaires Focu	us Groups Affinity I	Diagram Re	lationship Mappir	ng* Flow Pr	ocess Charts	Service Blueprints
Data	Mind ervations		eral Thinking	Flowcharting		Process Mapping
Collection Obse	Suggestic	n systems Crea	ating Ideas	Desig	ning & Analyz	ing Processes

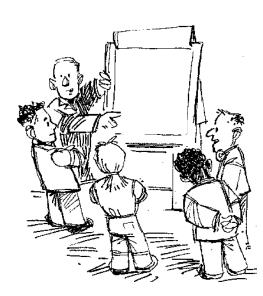

- A high-level visual representation of a business process.
- Helps to understand the flow of value as perceived by the customer.
- Helps identify and eliminate waste (Muda).
- Helps make the process as close to lean as possible.
- Considered as an improvement tool rather than just a definition of how the process operates or should operate.

- It is often associated with manufacturing.
- It can also be applied in:
 - Product development.
 - Service related industries: e.g. healthcare, hospitality and logistics.

□ Used when you want improve an end-to-end process in a single site.

- Considered as:
 - A strategic tool.
 - A change management tool.
 - A communication tool.
- A collection of value and non-value added processes that produce a good, a service or a combination of both.

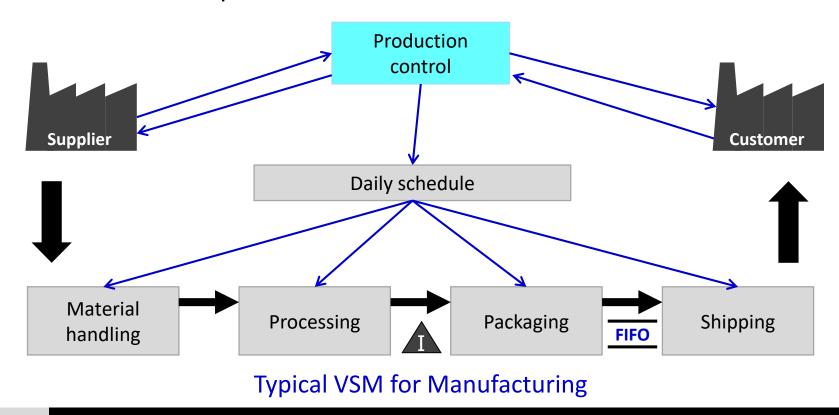
- Helps identify opportunities for reducing waste and improving quality.
 - By making the non-value added activities more easy to identify.
- Effectively communicates where to focus the continuous improvement efforts to deliver more value.


VSM is preferred over other process mapping techniques:

- When you want to find out the Lean opportunities that exist in your core processes.
- When you want to know the various inventories and delays exist in your processes.
- When you want to know the various business systems used by your processes.
- When you want to improve productivity, utilization and load distribution of staff.
- When you want to know the effectiveness of your customer service approach.
- When you want to present the health of your processes to the top management.

Benefits:


- Gives the opportunity to understand what happens today.
- Helps discussing the needed improvements.
- Enables to see the big picture from beginning to end.
- Enables to see where problems lie within processes:
 - Non-value added activities.
 - Delays.
 - Rework.
 - Bottlenecks.
 - Excessive inventory levels.
 - · Other forms of waste.
- Helps establishing a future state vision.


□ For example, the team may see an opportunity for maximizing the production rate to match the rate of customer demand.

- □ A **value stream** is the set of all activities required to convert raw materials to a finished product in the hands of the customer.
- It includes other functions such as order-taking, order communication and detailed scheduling.

In manufacturing, it spans from the event the materials are received until the finished products are delivered to the customer.

Material Flow:

- It is where products flow through the stream.
- It includes:
 - Processing.
 - Handling.
 - Transport.
 - Storage.
- □ It can be separated into different branches that rejoin again.
- You don't need to map the flow of every part or product but the production of a single product or product family.
- □ Focus on long lead time and high volume products.

Material Flow:

□ A Product Family Matrix may be helpful.

Products	Press	Shape	Bend	Paint	Assemble
Α	X	X		X	X
В	X		X	X	X
С			X	X	X
D		X		X	X

Inventory:

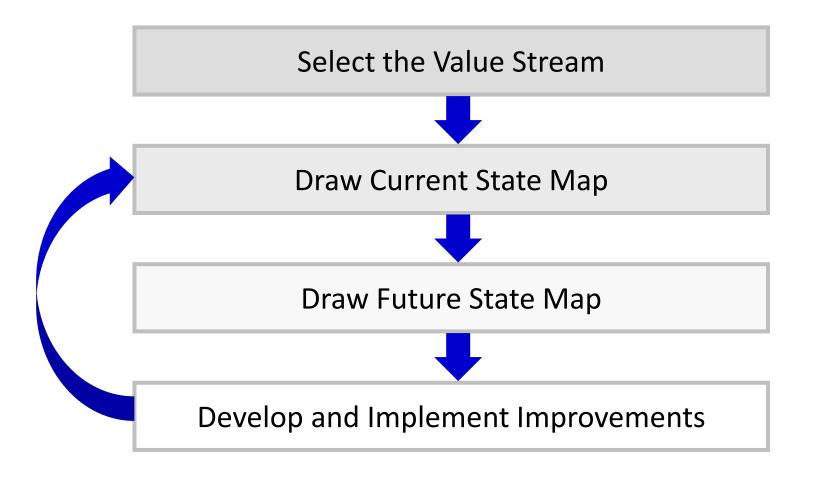
□ It is also important to look at the amount of raw materials, work in process (WIP), and finished products that are stored at any particular time.

Raw Materials

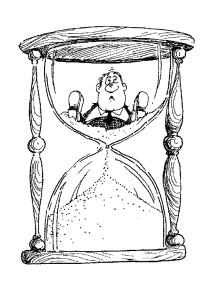
Work in Process

Finished Goods

Information Flow:


- VSM represents the information flow along with the material flow.
- It is critical to the effective and timely execution of any process.
- It includes:
 - Orders, instructions, schedules, approvals and reports.
 - Replenishment cards.
 - Verbal discussions and communication.

- □ There are two types of information:
 - Manual information that is passed on manually or verbally.
 - Electronic information that is passed on via telephone, fax, email, etc.


We should map informal processes as well

The Current State Map:

- Develops an understanding of how the value stream operates today.
- Helps identify the waste elements of the existing system.

Select the Value Stream

Draw the Current State

Draw the Future State

Plan & Implement Improvements

The Future State Map:

- The blueprint that you want to achieve toward a more lean business system.
- It should be based on Lean principles such as flow, pull and perfection to create a more streamlined production flow.

Select the Value Stream

Draw the Current State

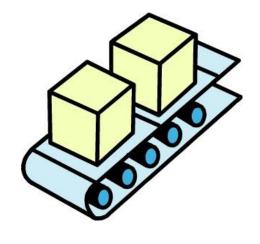
Draw the Future State

Plan & Implement Improvements

Guidelines for Developing the Future State Map:

- Start only when the current state map is understood and agreed.
- □ Invite the people who are involved in the process.
- Look for steps in the process that can be simplified or eliminated.

Guidelines for Developing the Future State Map:


Look for:

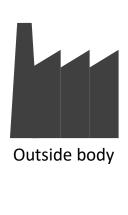
- Build-ups of inventory.
- Stock shortages.
- High scrap and rework rates.
- Long travel distances.
- bottlenecks.
- Significant variations in cycle times or demand levels.
- Different time basis compared with key customers.
- Lengthy checking or approval periods.
- Too few or too many staff in key areas.
- 5S and safety issues.

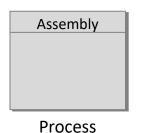
Guidelines for Developing the Future State Map:

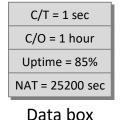
- Develop continuous flow wherever possible.
- Use pull and kanban systems and where continuous flow is not possible.
- Produce to Takt time.
- Send customer schedule to only one production process (the pacemaker process).
- Distribute the production of different products evenly.

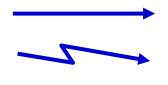
Implementation Plan:

- Should then be developed to get to the future state.
- Take into consideration the gaps between where are and where we want to be.
- □ A timetable should be put together with milestones, review periods and responsibilities.
- □ Remember that this is a project that needs to be owned, tracked and monitored throughout its life cycle.


Select the Value Stream

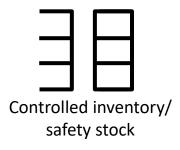

Draw the Current State

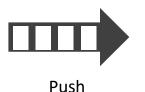

Draw the Future State

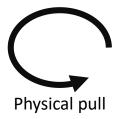

Plan & Implement Improvements

VSM Symbols:

Manual/electronic


information flow





Process Box:

- Used to indicate the process name.
- Covers one area of continuous flow:
 - Where products flow without being stored, queued or delayed.

Coating

C/T = 2.3 seconds

C/O = 52 minutes

Uptime = 85%

NAT = 25,200 seconds

Scrap rate = 3.1%

Date Boxes:

- Used to carry all data related to a specific process box.
- Can also be used to display data and performance information related to:
 - Inventory
 - Transportation
 - Important suppliers
 - Important customers

Coating

C/T = 2.3 seconds

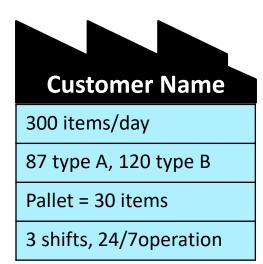
C/O = 52 minutes

Uptime = 85%

NAT = 25,200 seconds

Scrap rate = 3.1%

Date Related to Suppliers may Include:


- Demand rate (items/day).
- Shipping frequency.
- Packaging size.
- Actual lead time.
- Required lead time.
- Error rate.
- Order adjustments.
- Supplier shift pattern.
- Number of suppliers.
- Different types of materials.

Delivery time: 30-55 days

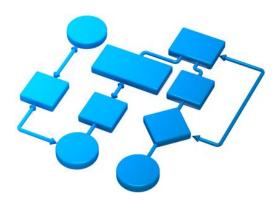
Date Related to Customers may Include:

- Customer demand (items/day).
- Shipping frequency.
- Packaging size requirement.
- Actual lead time.
- Required lead time.
- Error rate.
- Order adjustments.
- Customer shift pattern.
- Number of customers.
- Product mix.

Date Related to Each Process may Include:

- □ Cycle time (CT).
- □ Changeover time (C/O).
- Net available working time (NAT).
- □ Production rate (i.e. units/day).
- Scrap rate / % defects.
- Machine uptime %.
- Processing time.
- Maximum capacity.
- Overall equipment effectiveness.
- Number of operators.
- Number of product variations.

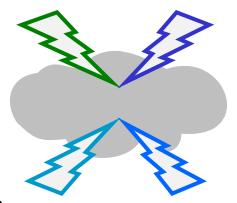
Data Box			
C/T	VAT		
P/T	C/0		
NAT	OEE		


Transportation .. Inventory:

- Lot size.
- Transportation time.
- Number of product types.
- Distance traveled.
- Transportation frequency.
- **.**
- Amount of inventory.
- Queue or delay time.
- Number of product types.
- Inventory type.

How to Conduct a Value Stream Mapping Exercise:

- Establish the team and include people working in the process, process owners and planners.
- Identify the product and the value stream.
- Physically walk the flow starting from the customer then work upstream through the process.
- □ Capture all relevant data and performance information as you walk.
- Always record what you see not what you are told is normally there.
- Walk the information flow and collect examples of relevant records.


How to Conduct a Value Stream Mapping Exercise:

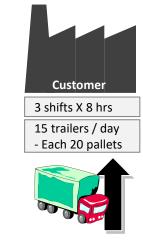
- Draw the map on a large piece of paper (consider zoning the map).
- Start with the material flow including processes, inventory, delays and transportation.
- Map the information flow and the secondary processes.
- Complete the data boxes.
- Add the VSM timeline and any other information you feel is relevant to the map.
- Identify the non-value added activities, delays, rework, bottlenecks, and other form of waste.

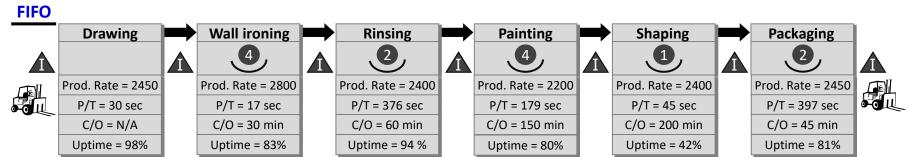
Zone the Map: Title and Date Information flow External customers and suppliers Secondary processes Material flow Primary processes Delays / inventory between processes **Timeline** VSM calculations

How to Conduct a Value Stream Mapping Exercise:

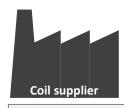
- Brainstorm how to eliminate waste. Ask questions like:
 - Are things done in the right sequence?
 - Does information arrive on time?
 - Can any paper work be eliminated?
 - Are existing systems used in optimum way?
 - Is automation possible?
 - Is information available, reliable and up-to-date?
 - Is information really used in decision making?
 - Are there any quick wins possible?
- Visualize the ideal state and develop a future state map.
- Plan and implement actions to achieve the future state.

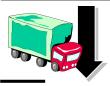
Example: Start with customer requirements




3 shifts X 8 hrs

15 trailers / day - Each 20 pallets

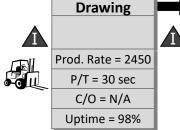

Example: Draw material flow and add process data

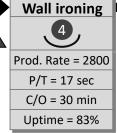

Example:

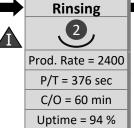
Add suppliers

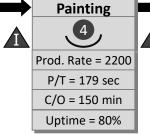
5 shipments / month

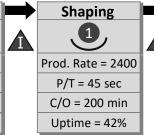
- Each 20 containers
- Each 2 coils

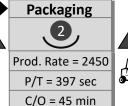


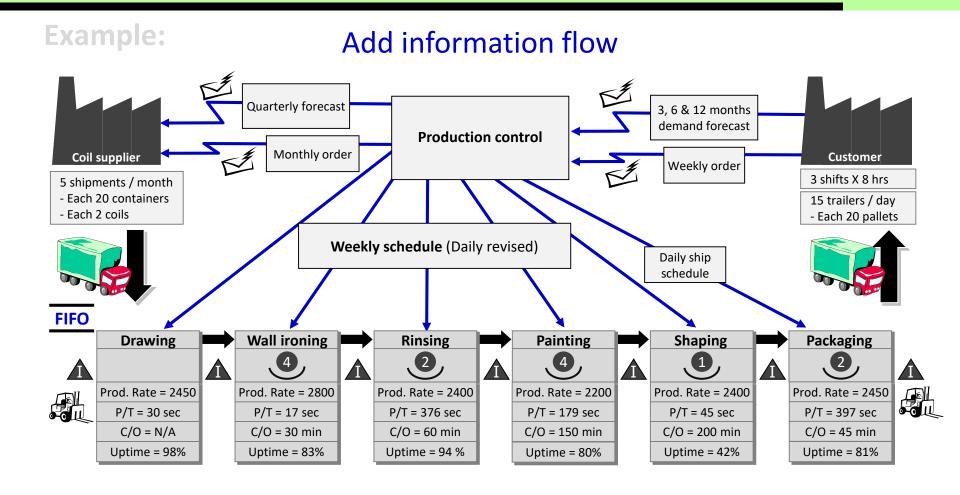

3 shifts X 8 hrs 15 trailers / day

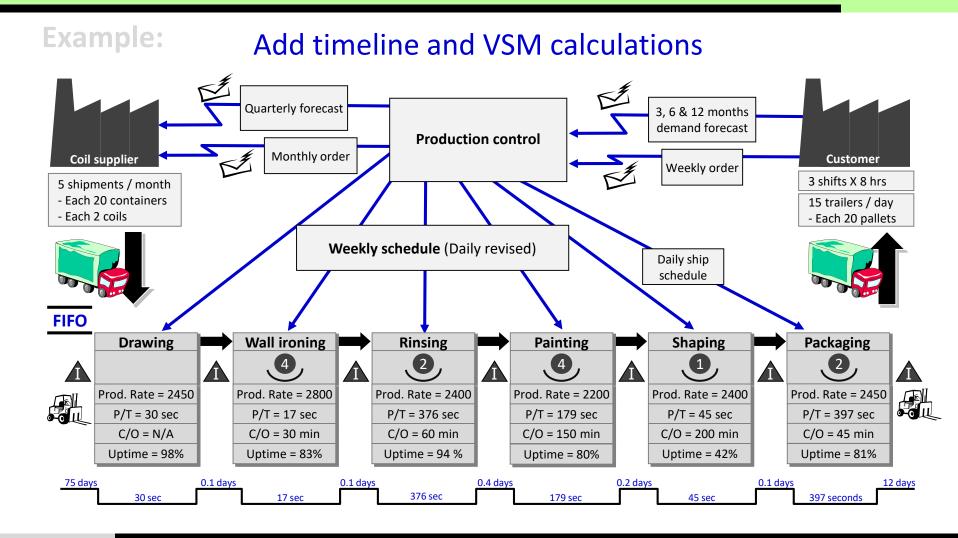

- Each 20 pallets

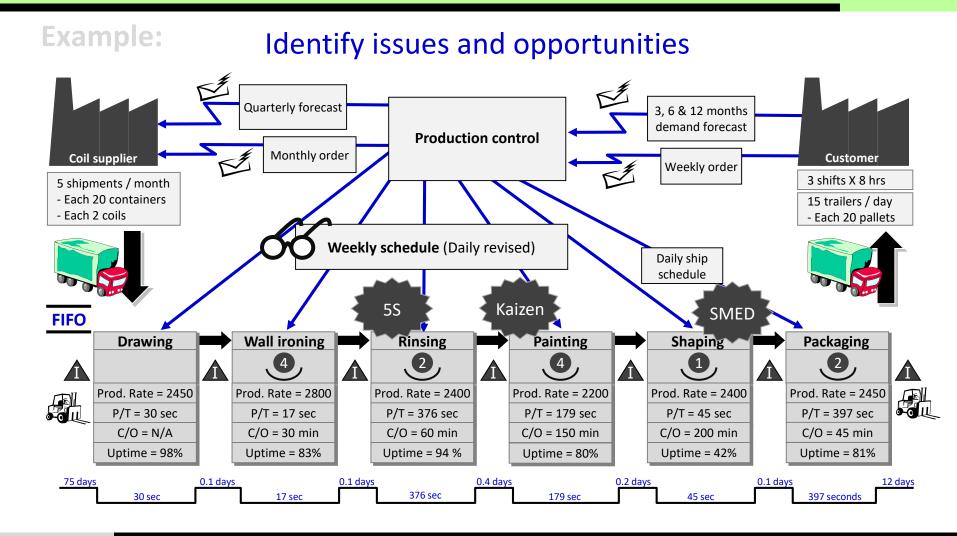



FIFO

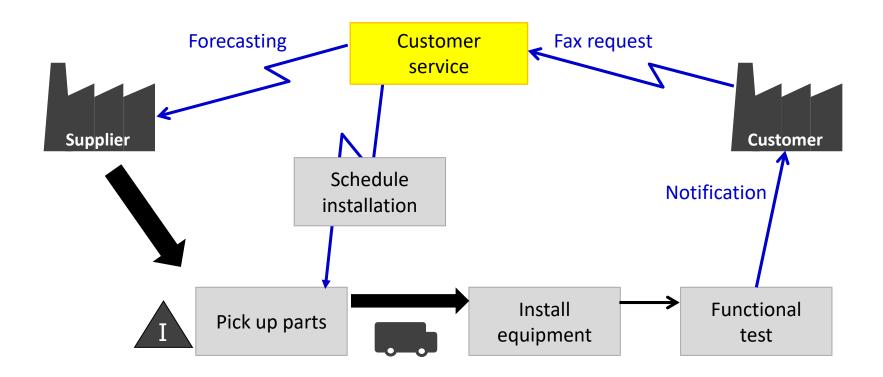


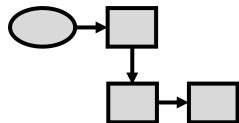






Uptime = 81%





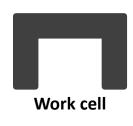
Non-Manufacturing Example – Equipment Installation:

Further Information:

- It is important to define what is meant by the future before beginning to develop the future state.
- VSM tends to display more information than a typical process map.
 - A process map just shows the process as it is.
 - A value stream map highlights the flow of value and suggests improvements.
- Make sure that customer's data is directly taken from the customer or from the person who receives customer orders.

Further Information:

- □ It is sometime known as **material & information flow mapping**.
- A current state map without a future-state vision is waste.
- A future state map without an action plan to achieve it is waste.
- When the future state becomes a reality, it becomes the new current state.
- It is often useful to draw a series of future state maps starting with a blue sky vision and working backwards towards what is achievable in the shorter term.


Further Information:

□ This icon is used to show where parts are transferred to the next process in sequence on a FIFO basis.

□ Further useful VSM icons:

