CONTROL PHASE

OBJECTIVE

Main objective of control phase:

- Final solution
- Maintaining guaranteed process improvements
- Ensuring that new process problems are identified and quickly corrected
- Disseminating lessons learned and to identify replication
- Standardization of opportunities.

CONTROL OVERVIEW

- Develop- To develop the process control plan
- Monitor- To monitor the performance of ongoing process
 Prepare-Prepare the response Plan
 Success-Having a success Meet

WHAT IT MEANS

Implement Control Plan to Ensure that Problem never Returns

Developing a process Control plan

- ✓Control plan notifies the vital quality features, the X's or Y's of the process elements.
- ✓The control plan substitutes detailed instructions of working or basic functional operations.
- ✓ All process parts constitutes corresponding control Plan and similar ones are grouped

Types of control Plans

MODEL

Definition

- It lists the controls for the following:
- >dimensional measurements
- >types of materials
- required performance tests.

KAIZEN

Definition:

- Kaizen refers to a philosophy or practices that focus on continuous improvement of processes in
 - Manufacturing
 - Engineering and
 - Business Management
 - Kaizen means 'change' or the 'action to correct'.
 - Zen means 'good'.

HISTORY OF KAIZEN

- Masaaki Imai is known as the developer of Kaizen.
- Toyota production system is the primary base for kaizen.

Characteristics Of KAIZEN

- Applicability
- Can be used in both manufacturing and non-manufacturing environments
- Highly effective & results oriented Kaizen events will generate
 Quick results
 Measurable results
 Establish the baseline and
 Measure the change.

Characteristics Of KAIZEN

• A Learning Experience

- Every member of a Kaizen Team will walk away from the event learning something new.
- Team based & cross functional
- Team members can be from various functions of the business.

Kaizen Result Sheet

Kaizen	Results						
Department Name	Mac-30 Line				Date	26-Feb-02	
Clutch Type	102-20-177				Takt Time	126	
Station Identification							
		Goal	Before Kaizen	After Kaizen	Total Change		
Space (Sqare Feet)		-50%	323	208	-38%		
Inventory at Line		-75%	91,635	16,000	-83%		
Leadtime To Pull Job For Line		-75%	1 Hour	5 min	-92%		
	Crew Size	-25%	4	2	-50%		
Scope Changeover (mins)		-50%	40	20	-50%		
Press / Drill Changeover (mins)		-50%	35	10	-71%		
One good piece - Throughput		-50%	4050 sec	78 sec	-98%		
	Line Flow	One Piece	Batch -50 per	One Piece	n/a		
Remarks							
DBS-0007 05/97							

Tools

- >Flow Charts
- Cause And Effect Diagrams
- >Check Sheets
- >Histograms
- >Pareto Charts
- >Scatter Diagrams
- >Control Charts

Kaizen Events

✓ 5s ✓ Value stream mapping ✓ Standardizing work

What Kanban Is

- Kanban is a Japanese term which means designated place
- It is a method of just-in-time (JIT) production that uses precise instrumentation or sizing with a visual attachments
- It is used in manufacturing which tells the time to get or make more of something(visual card, sign board or billboard)

Which is clear?

Accepted Activity

Advantages of Kanban

- Reduced inventory as inventory is replenished only when it is consumed
- Less waste
- Flexibility in production
- Reduced cost due to reduced inventory

Determining Kanban Material

$$k = Tt = tS/nP$$

Where

Tt = Takt Time

nP = Average number of Parts shipped

tS = Average time between

Where

- K = Kanban size
- DL = Average Demand during Lead time
- **SS** = Safety Stock
- CS = Container Size

$\mathsf{K}=(DL+SS)/CS$

Size of kanban

$$\mathsf{K} = \frac{P}{U} * T$$

Where

K = Kanban size

p = Units transported per month

u = Number of minutes for a month of production

T = Process active (time)

Tt = nP/SLt

Where **Tt** = Takt time **nP** = Number of Raw Parts that can be made in determined shipping window time **SLt** = Standard Lead time

Control Plan

Standardizing work:

- A Standardized work is organized and order of work items that itaccomplishes are
 - Less Variation
 - Standardized work is demanded by visual factory Framework

Variation

Key Deliverables

Purpose

- Maintains the changes that were made in the X's in order to sustain the improvements in the X's
- The team must develop a control plan, which consists of five basic parts
- √training plan
- \checkmark documentation plan
- ✓ monitoring plan
- \checkmark response plan and
- \checkmark institutionnalisation plan

Training Plan

- The Training Plan gives
- ✓ Instructions for reading and interpreting control charts
- ✓ Guidance in understanding and using all the documentation on the improved process
- Knowing the contingency response plan and a way to implement it

Documentation Plan

- The Documentation Plan ensures whether
- The improvements are institutionalized
- The new process steps, standards, and documentation are integrated into normal operations
- Systems, procedures, policies, instructions and budgets are modified to sustain the gains that have been achieved.

Monitoring Plan

The Monitoring Plan

- Documents and monitors the process using the metrics defined in DMAIC
- >Evaluates the solution
- Assesses the capability of the process over time
- Establishes control systems to ensure that the solutions work for the long term

Response Plan

The Response Plan

✓ Establishes and checks the points that will signal out-of-control conditions

 \checkmark Defines the actions to be taken.

Institutionalization Plan

The Institutionalization Plan

- Aligns systems and structures in order to ensure that the changes will continue
- Develops standards, procedures documents and communicates them to all stakeholders particularly to the owners and operators of the process

Lean Controls

Step	Japanese Word	Direct Meaning	English
Step 1	Seri	Clearing Up	Sorting
Step 2	Seiton	Organizing	Straightening
Step 3	Seiso	Cleaning	Shining
Step 4	Seketsu	Standardizing	Standardizing
Step 5	Shitsuke	Training & Discipline	Sustaining

Explanation

Seiri = Sorting Eliminate everything not required for the current work, keeping only the bare essentials.

Seiton = Straightening Arrange items in a way that they are easily visible and accessible.

Seiso = Shining Clean everything and find ways to keep it clean. Make cleaning a part of your everyday work.

Seketsu = Standardizing Create rules by which the first three S's are maintained.

Shitsuke = Sustaining Keep 5S activities from unraveling

Understanding

Sort

- Sorting always helps in removing waste
- Creates safer work area
- Gains space
- Easier to visualize the process.

Un Sorted Garments

Sorted Garments

Straightening

Definition

Arranging all necessary items in a designated place that gives easy access and thus save access time.

Shining

- Keep everything clean.
- A clean work place is a symbol of quality production process and gives an ease to identify problems.

Standardizing

 ✓ We must keep the work place neat enough for visual identifiers to be effective in uncovering hidden problems.

 ✓ Continuous assessment always gives a scope to improve and makes problems visible

Sustaining

- Defined as a process of continuous improvement and sustaining the previous S's using self-discipline.
- Each individual has to commit to the process, stick to the rules, and maintain motivation.

Results of 5s's

✓Neat & clean workplace ✓ Smooth working \checkmark No obstruction ✓ Safety increases ✓ Productivity improves ✓ Quality improves ✓Wastage decrease ✓ Machine maintenance ✓Visual control system ✓ Employees motivated ✓ Workstations become spacious

Red Tag Techniques

The Red Tag Techniques does the following:

- Gives Red Labels to the staff
- Ask Staff to go through every item in the work area
- Store in the red tag area
- Place the suspected items in the red tag area once a week
- Allows the staff to reevaluate the needed items

Red TagName:Use:Id:Department:Action Req:

Statistical Process Control

- In Production process there are always errors due to which the outputs cannot become deterministic and perfect.
- In erroneous production the manufactured parts become non-identical which lead to variation growth in some features of the product.
- To correct these problems we need robust statistical techniques and probabilistic models to study such processes.

Statistical Process Control(SPC)

- SPC is a methodology that monitors processes and identifies cause of variance which in turn signals the need to take necessary actions
- When a cause is present, the system is said to be statistically out of control
- If the variance is due to usual errors, then process is said to be in statistical control

SPC: Drill

Concepts:

- Mean
- Standard Deviation
- Sampling
- Central Limit Theorem
- Control Charts for Attributes: p Charts
- Control Charts for Variables: x and R

Mean

Mean is defines as the average of data values in a group.

M + E + A + N

Standard Deviation

SD shows how much variation or "dispersion" exists from the average

Sampling

Sampling is to select at random from a population and use it to test hypotheses about the population

CONTROL CHARTS

- ✓ It is a graph that represents measurements of process performance.
- ✓ It contains the target values of the attribute that is being measured
 - Upper control limit (UCL)
 - Lower control limit (LCL)
- ✓Types of control charts
 - X bar chart
 - R chart
 - P chart

EXAMPLE OF CONTROL CHARTS

Average \overline{X}

Range R

Calculating the control limits

- Avg($\overline{\mathbf{x}}$) and Range (R)
 - \overline{X} chart: UCL_x = $\overline{\overline{X}}$ + A₂ $\overline{\overline{R}}$

R chart: UCL_R = D₄ \overline{R}

 $LCL_R = D_3 \overline{R}$

- $\overline{\chi}$ Average of the $\overline{\chi}$ values
- UCL_X: Upper ControlLimit on Avg chart
 - Lower limit on Avg chart
- LCLx: Upper control on R chart
- UCL_R: Lower control limit on R chart
- LCL_R : Sample Size
 - : Avg of all reading in sample
- X : Data Reading
- D_i : Varying constants

CONTROL CONCEPTS

- >Lean Control Plan
- >Standardize Process
- >Total Productive Maintenance
 (TPM)
- >Audit and Documentation

P-Charts

P-charts are used where Subgroup Size Varies on the following:

P-CHARTS

- Proportion of Late Deliveries
- Closing Books on Time
- Defectives by Production Runs
- Inventory Cycle Count Accuracy
- Percent of Claims Rejected
- Batch Proportion Defective

X charts

X bar R "Classic" is the most common chart for manufacturing

Uses

An x bar chart is used to monitor the average value, or mean, of a process over time .

R chart

An "R" Chart is a control chart that is used to monitor process variation when the variable of interest is a quantitative measure.

$$>$$
R = xmax - xmi_n

End of the Control Phase

- The controller calculates, verifies, and documents the financial gains of the project
- The black belt and the champion close the control Phase and formally end the project with the final phase-gate review, handing over the process to the process owners

REFERENCES

- <u>http://blog.5ssupply.com/</u>
- <u>http://www.mccrometer.com/</u>
- <u>http://www.qualitycouncil.com</u> (Lean Six Sigma primer)
- <u>OpenSourceSixSigma.com</u>(Certified lean Six Sigma)
- <u>www.stoweconsultingcompany.com</u> (What is Kanban)
- www.wikimedia.org