
ptg

ptg

Praise for Lean-Agile Acceptance Test-Driven
Development

“Lean-Agile Acceptance Test-Driven Development tells a tale about three fic-
tive project stakeholders as they use agile techniques to plan and execute their
project. The format works well for the book; this book is easy to read, easy to
understand, and easy to apply.”

—Johannes Brodwall, Chief Scientist, Steria Norway

“Agile development, some say, is all about pairing, and, yes, I’m a believer in
the power of pairing. After reading this book, however, I became a fan of the
‘triad’—the customer or business analyst + the developer + the tester, who work
collaboratively on acceptance tests to drive software development. I’ve writ-
ten some patterns for customer interaction and some patterns for testing and I
like what Ken Pugh has chosen to share with his readers in this down-to-earth,
easy-to-read book. It’s a book full of stories, real case studies, and his own good
experience. Wisdom worth reading!”

—Linda Rising, Coauthor of Fearless Change:
Patterns for Introducing New Ideas

“The Agile Manifesto, Extreme Programming, User Stories, and Test-Driven
Development have enabled tremendous gains in software development; how-
ever, they’re not enough. The question now becomes ‘How can I ensure clear
requirements, correct implementation, complete test coverage, and more impor-
tantly, customer satisfaction and acceptance?’ The missing link is acceptance as
defined by the customer in their own domain language. Lean-Agile Acceptance
Test-Driven Development is the answer.”

—Bob Bogetti, Lead Systems Designer, Baxter Healthcare

“Ken Pugh’s Lean-Agile Acceptance Test-Driven Development shows you how
to integrate essential requirements thinking, user acceptance tests and sounds,
and lean-agile practices, so you can deliver product requirements correctly and
efficiently. Ken’s book shows you how table-driven specification, intertwined
with requirements modeling, drives out acceptance criteria. Lean-Agile Accept-
ance Test-Driven Development is an essential guide for lean-agile team mem-
bers to define clear, unambiguous requirements while also validating needs with
acceptance tests.”

—Ellen Gottesdiener, EBG Consulting, www.ebgconsulting.com,
Author of Requirements by Collaboration and

The Software Requirements Memory Jogger

Wow! eBook <WoweBook.Com>

www.ebgconsulting.com

ptg

“If you are serious about giving Agile Testing a chance and only have time to
read one book, read this one.”

—David Vydra, http://testdriven.com

“This book provides clear, straightforward guidance on how to use business-
facing tests to drive software development. I’m excited about the excellent
information in this book. It’s a great combination of the author’s experiences,
references to other experts and research, and an example project that covers
many angles of ATDD. A wide range of readers will learn a lot that they can put
to use, whether they work on projects that call themselves lean or agile or simply
want to deliver the best possible software product.”

—Lisa Crispin, Agile Tester, ePlan Services, Inc., Author of Agile Testing

Wow! eBook <WoweBook.Com>

http://testdriven.com

ptg

Lean-Agile Acceptance
Test-Driven Development

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

Lean-Agile
Acceptance
Test-Driven
Development
Better Software Through
Collaboration

Ken Pugh

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Wow! eBook <WoweBook.Com>

ptg

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Pugh, Kenneth.
 Lean-agile acceptance test driven development : better software through
collaboration / Ken Pugh.
 p. cm.
 Includes bibliographical references and index.
 ISBN-13: 978-0-321-71408-4 (pbk. : alk. paper)
 ISBN-10: 0-321-71408-3 (pbk. : alk. paper) 1. Agile software development.
2. Computer software--Testing. 3. Computer software—Quality control.
4. Cooperation. I. Title.
 QA76.76.D47P837 2011
 005.1’4--dc22
 2010042906
Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any
prohibited reproduction, storage in a retrieval system, or transmission in any form or by
any means, electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-321-71408-4
ISBN-10: 0-321-71408-3

Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville,
Indiana.
First printing December 2010

Editor-in-Chief
Karen Gettman

Executive Editor
Chris Guzikowski

Senior Development Editor
Chris Zahn

Managing Editor
Kristy Hart

Project Editor
Jovana San Nicolas-Shirley

Copy Editor
Karen Gill

lndexer
Cheryl Lenser

Proofreader
Sheri Cain

Editorial Assistant
Raina Chrobak

Cover Designer
Alan Clements

Compositor
Nonie Ratcliff

Wow! eBook <WoweBook.Com>

ptg

 I’d like to dedicate this book to three people.
My brother Bob inspired me to become an engineer.

I recall one time when he was home from college and presented me
with the N-body problem [Wiki01] and the four color map problem
[Wiki02]. My high school science teacher, Mr. Sanderson, spurred
me on to explore topics such as why there is air. My mechanical
engineering professor at Duke, Dr. George Pearsall, encouraged

exploration. In his strength of materials class, I discovered
why my guitar strings broke. To each of them, I give thanks.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

ix

Contents

Introduction . 1

Part I: The Tale

Chapter 1: Prologue . 9

Ways to Develop Software. 9
One Way. 9
Another Way. 9
The Difference. 10

The Importance of Acceptance Tests . 10
System and Team Introduction . 12

The System . 12
The People. 13

Summary . 14

Chapter 2: Lean and Agile . 15

The Triad and Its Units . 15
Post-Implementation Tests . 17
Quick Feedback Better Than Slow Feedback 18
Preimplementation Tests . 19
Lean and Agile Principles . 20
Summary . 21

Chapter 3: Testing Strategy . 23

Types of Tests . 23
Where Tests Run . 25
Test Facets . 26

Control and Observation Points . 27
New Test Is a New Requirement. 27

Summary . 28

Wow! eBook <WoweBook.Com>

ptg

x Lean-Agile Acceptance Test-Driven Development

Chapter 4: An Introductory Acceptance Test . 29

A Sample Business Rule . 29
Implementing the Acceptance Tests . 31

Test Script . 32
Test User Interface . 33
xUnit Test . 34
Automated Acceptance Test . 35
An Overall Test. 36

Testing Process. 37
Summary . 37

Chapter 5: The Example Project . 39

The Charter . 39
Objectives . 40
Project Acceptance Tests . 41

High-Level Requirements . 43
Features. 43
Feature Acceptance Criteria . 45

Summary . 46

Chapter 6: The User Story Technique . 47

Stories . 47
Features into Stories . 48
Roles . 49
Role Attributes . 49
Persona . 50
Stories for Roles . 51
Story Acceptance Criteria . 52
Acceptance Tests Determine Size. 53
Customer Terms . 54

INVEST Criteria . 55
Summary . 56

Chapter 7: Collaborating on Scenarios. 57

Use Cases from User Stories. 57
Simple Use Case . 59
Exceptions and Alternatives . 60
Acceptance Tests . 63
Documentation . 63

Wow! eBook <WoweBook.Com>

ptg

Contents xi

Story Map . 63
Conceptual Flow . 65
Communication . 66
Summary . 68

Chapter 8: Test Anatomy. 69

Triad Creates Tests . 69
Test Context . 70
Test Structure. 71

Calculation Table . 73
Data Table . 74
Action Table . 75

Tests with Example Values . 76
Requirements Revised . 77
Acceptance Test Revised . 78

Test with Values in Text . 79
When and Where Tests Are Run . 80
Summary . 81

Chapter 9: Scenario Tests. 83

Tests for Exception Scenarios. 83
Tests for Business Rules . 87
Cross-Story Issues . 88
Don’t Automate Everything . 89
Multi-Level Tests . 90
User Interface Tests . 93
Check the Objectives . 93
Summary . 94

Chapter 10: User Story Breakup . 95

Acceptance Tests Help Break Up Stories . 95
Business Rule Tests . 96
A Story with a Business Rule . 100
Summary . 101

Chapter 11: System Boundary . 103

External Interfaces . 103
More Details . 107

Wow! eBook <WoweBook.Com>

ptg

Lean-Agile Acceptance Test-Driven Developmentxii

External Interface Tests . 108
Component Tests . 108
Test Doubles and Mocks. 111

What Is Real?. 112
Story Map of Activities . 113
Summary . 114

Chapter 12: Development Review . 115

The Rest of the Story . 115
Usability Testing . 116
Separating State from Display . 116
Quality Attribute Tests . 118
Workflow Tests. 119

Deployment Plans . 120
From Charter to Deliverable . 120
Summary . 121

Part II: Details

Chapter 13: Simplification by Separation . 125

Complex Business Rules. 125
Simplify by Separating. 126
The Simplified Rule. 128

Rental History . 128
Summary . 130

Chapter 14: Separate View from Model . 131

Decouple the User Interface . 131
Decoupling Simplifies Testing . 136
Summary . 136

Chapter 15: Events, Responses, and States . 137

Events and an Event Table. 137
States and State Transitions . 139
Internal State or External Response . 142

Transient or Persistent States. 144
A Zen Question. 144

Summary . 144

Wow! eBook <WoweBook.Com>

ptg

Contents xiii

Chapter 16: Developer Acceptance Tests . 145

Component Acceptance Tests . 145
Field Display Tests . 145
Tabular Display Tests . 147

Summary . 151

Chapter 17: Decouple with Interfaces . 153

Tests for a Service Provider . 153
The Interface . 153
Quality Attribute Tests . 155
Comparing Implementations . 155

Separating User Interface from Service. 157
Separation of Concerns . 158

Reusable Business Rules. 158
Summary . 159

Chapter 18: Entities and Relationships. 161

Relationships . 161
Entities and Relationships . 161
Multiple Relationships . 163
Alternative Representations. 166

Summary . 166

Chapter 19: Triads for Large Systems . 167

Large Systems. 167
When a Customer Test May Not Be Required. 169

Data Conversion . 170
Database Conversions . 170

What If There Are No Tests? . 170
Legacy Systems . 172

Summary . 173

Part III : General Issues

Chapter 20: Business Capabilities, Rules, and Value 177

Business Capabilities . 177
Scenario Handling . 178
Business Rules Exposed . 179

Wow! eBook <WoweBook.Com>

ptg

Lean-Agile Acceptance Test-Driven Developmentxiv

A Different Business Value. 179
Summary . 181

Chapter 21: Test Presentation . 183

Customer Understood Tables. 183
Table Versus Text . 185
Specifying Multiple Actions . 185
Complex Data . 187
Custom Table Forms . 188
Summary . 189

Chapter 22: Test Evaluation. 191

Test Facets . 191
Understandable to Customers . 191
Spell Checked . 192
Idempotent . 192
Not Fragile . 192

Test Sequence. 193
Workflow Tests. 193

Test Conditions . 194
Separation of Concerns . 194
Test Failure . 195
Test Redundancy. 196

No Implementation Issues . 197
Points to Remember. 197
Summary . 198

Chapter 23: Using Tests for Other Things . 199

Uses of Acceptance Tests . 199
Degree of Doneness. 199
Estimation Aid . 200
Breaking Down Stories . 200
Developer Stories. 200

Tests as a Bug Report . 201
Root Cause Analysis . 201
Production Bugs . 202
Regression Testing. 202

Summary . 202

Wow! eBook <WoweBook.Com>

ptg

Contents xv

Chapter 24: Context and Domain Language . 205

Ubiquitous Language . 205
Two Domains . 207
Summary . 208

Chapter 25: Retrospective and Perspective . 209

Recap . 209
The Process . 210
Testing Layers . 210
The Tests. 211
Communication. 212

What’s the Block? . 212
Monad . 212
Unavailable Customer . 213
Change . 213
Risks . 214

Benefits . 214
Summary . 215

Part IV Case Studies

Chapter 26: Case Study: Retirement Contributions 219

Context . 219
The Main Course Test . 220

Setup . 220
Event . 221
Expected . 221
Implementation Issues . 222
Separation of Concerns . 222

Business Value Tracking . 223
One Exception . 223

Event . 223
Expected . 224

Another Exception . 225
Event . 225
Expected . 225

Wow! eBook <WoweBook.Com>

ptg

Lean-Agile Acceptance Test-Driven Developmentxvi

Two Simultaneous Exceptions . 226
Event . 226
Expected . 227

The Big Picture. 227
Event Table . 228
State Transition Table . 228
Summary . 230

Chapter 27: Case Study: Signal Processing . 231

It’s Too Loud . 231
Sound Levels . 231
Developer Tests . 233
Summary . 233

Chapter 28: Case Study: A Library Print Server . 235

The Context. 235
A Workflow Test . 236
Summary . 241

Chapter 29: Case Study: Highly Available Platform. 243

Context for Switching Servers . 243
Test for Switching Servers . 244
Test for Technical Rule . 246
Summary . 248

Part V : Technical Topics

Chapter 30: How Does What You Do Fit with ATDD? 251

Test Platforms . 251
Internal Design from Tests . 252
Device Testing . 254
Starting with User Interfaces . 255
Black Box Testing . 255
Unit Testing . 256
Summary . 256

Chapter 31: Test Setup. 257

A Common Setup. 257
Some Amelioration. 259

Wow! eBook <WoweBook.Com>

ptg

Contents xvii

Test Order . 260
Persistent Storage Issues . 260
Summary . 261

Chapter 32: Case Study: E-Mail Addresses. 263

Context . 263
Breaking Down Tests . 264

Local-Part Validation . 265
Domain Tests . 266
Disallowed Domain Tests . 268
Test to Ensure Connection . 269
Verification Test . 269

Summary . 270

Part VI : Appendices

Appendix A: Other Issues. 273

Context . 273
Customer Examples . 274

Fuzzy Acceptance Tests . 274
Acceptance Test Detail . 275

Requirements and Acceptance Tests. 275
Documenting Requirements and Tests 276
Decoupling Requirements . 276
Separation of Issues. 276

Testing Systems with Random Events . 277
The Power of Three . 277
Summary . 278

Appendix B: Estimating Business Value . 279

Business Value . 279
Developer Stories . 281
Summary . 282

Appendix C: Test Framework Examples . 283

The Examples. 283
Fit Implementation. 284

Setup . 284
Check-Out CD . 284

Wow! eBook <WoweBook.Com>

ptg

Lean-Agile Acceptance Test-Driven Developmentxviii

Check-In . 286
Category-Based Rental Fees . 287

Slim—Table Style . 288
Header . 288
Setup . 288
Check-Out CD . 288
Check-In . 290
Category-Based Rental Fees . 291

Slim—Cucumber Style . 291
Setup . 291
Check-Out CD . 292
Check-In CD . 292
Scenario Library . 292
Category-Based Rental Fees . 294

Robot. 295
Setup . 295
Check-Out CD . 295
Check-In CD . 296
Category-Based Rental Fees . 296

Cucumber . 296
Check-Out CD . 297
Check-In CD . 297
Category-Based Rental Fees . 297

Test Frameworks . 298
Summary . 298

Appendix D: Tables Everywhere . 299

User Interface Tests with Tables . 299
Requirement Tables . 301

Another Table . 302
Quality Attribute Requirements . 303
Data Tables . 304
Summary . 304

Wow! eBook <WoweBook.Com>

ptg

Contents xix

Appendix E: Money with ATDD . 305

The Context. 305
The Original Tests . 306
The Acceptance Test Approach . 307
Summary . 310

Appendix F: Exercises . 311

Calculator . 311
Create Some Tests . 313

More Exercises. 313
Sam’s CD Rental . 314
Triangle. 314
File Copying Exercise . 314

References . 315

Epilogue . 323

Index . 333

Wow! eBook <WoweBook.Com>

ptg

xx

Acknowledgments

Over my two-fifths of a century in software, I’ve have the opportunity to inter-
act with a wide range of people. Many of the ideas expressed in this book have
come from them—from their books, their talks, and personal conversations.
Albert Einstein said, “Creativity is knowing how to hide your sources.” I would
like not to hide these people. The only problem is I can’t always remember what
I got from whom. The list includes in no particular order: Cem Kaner, Jerry
Weinberg, James Bach, Michael Bolton, Brian Marick, Ellen Gottesdiener, Karl
Wiegers, Ward Cunningham, Jim Shore, Rick Mugridge, Lisa Crispin, Janet
Gregory, Kent Beck, Gerard Meszaros, Alistair Cockburn, Andy Hunt, Bob
Martin, Dale Emery, III, Michael Feathers, Mike Cohn, Jim Highsmith, Linda
Rising, Ron Jeffries, Mary Poppendieck, Jim Coplien, Norm Kerth, Scott Ambler,
Jared Richardson, Dave Thomas, Martin Fowler, Bill Wake, Tim Lister, Eric
Evans, Bret Pettichord, Brian Lawrence, Jeff Patton, David Hussman, Rebecca
Wirfs-Brock, Joshua Kerievsky, Laurie Williams, Don Gause, James Grenning,
Tom DeMarco, Danny Faught, Jeff Sutherland, David Astels, Lee Copeland,
Elisabeth Hendrickson, Bob Galen, Gary Evans, George Dinwiddie, Jutta
Eckstein, Bob Hartman, David Chelimsky, Dan North, Lasse Koskela, Cedric
Beust, and Larry Constantine.

I’d like to thank Rob Walsh of EnvisionWare for the case study of a library
print server, Robert Martin for the Cucumber style example in Slim, Markus
Gaertner for the Slim example, Dale Emery for the Robot example, and John
Goodsen for the Cucumber example. I appreciate Gerard Meszaros for permis-
sion to use his testing matrix graphic. Thanks to Dawn Cannan, Gabriel Le Van,
Stephen Cresswell, Jared Richardson, Ian Cooper, Greg McNelly, and Gary
Marcos for their ATDD stories in the Epilogue. I’d like to acknowledge the Net
Objectives gang: Alan Shalloway, Jim Trott, Scott Bain, Amir Kolsky, Cory Foy,
and Alan Chedalawada. Also thanks to Omie and Tammi for keeping me sane.

In helping make this book a reality, I thank the people at Addison-Wesley,
Pearson Technology Group: Chris Guzikowski, Chris Zahn, Raina Chrobak,
Kristy Hart, Jovana San Nicolas-Shirley, Karen Gill, Nonie Ratcliff, Cheryl
Lenser, and Sheri Cain. And to reviewers Andrew Binstock, Graham Oakes,
Lisa Crispin, Linda Rising, Bill Wake, Robert Bogetti, Johannes Brodwall, Peter
Kurpis, SGuy Ge, Tom Wessel, Kody Shepler, Jinny Batterson, Julian Harty,
and III.

Wow! eBook <WoweBook.Com>

ptg

Acknowledgments xxi

Last but not least, I thank Leslie Killeen, my wife. She is a weaver. Software
is not her field. She reviewed my drafts, gave helpful hints, and supported me
through the creation process.

Wow! eBook <WoweBook.Com>

ptg

About the Author

Kenneth Pugh has over two-fifths of a century of software experience. Previously
a principal at Pugh-Killeen Associates, he is now a fellow consultant for Net
Objectives. He has developed software applications ranging from radar tracking
to financial analysis. Responsibilities have included everything from gathering
requirements to testing. After the start of the new millennium, he has worked
with teams to create software more effectively with lean and agile processes. He
has spoken at numerous national conferences; consulted and taught all over the
world; and testified on technology topics. This is his seventh book. In 2006, his
book Prefactoring won the Jolt Award [DrDobbs01]. In his spare time, he snow-
boards, windsurfs, and backpacks. Between 1997 and 2003, he completed the
Appalachian Trail. The cover photograph of Mount Katahdin, the northern end
of the trail, was taken by the author from Abol Bridge in Maine.

xxii

Wow! eBook <WoweBook.Com>

ptg

Introduction

“Context is all.”
Margaret Atwood, The Handmaid’s Tale

The context for the tale is introduced. A brief background of acceptance test–
driven development (ATDD) is presented.

Testable Requirements

Developing software with testable requirements is the theme of this book. A
testable requirement is one with an acceptance test. Acceptance tests drive the
development of the software. As many development groups have experienced,
creating acceptance tests prior to implementing requirements decreases defects
and improves productivity. (See the Epilogue for examples.) A triad—the cus-
tomer/business analyst, developer, and tester—collaborates on producing these
tests to clarify what is to be done. In creating a high-quality product, ATDD is
as much about this clarification as it is about the actual testing.

As an example, do you have criteria in mind as to whether this book will meet
your needs? If you finish this book, how will you know whether it has met those
criteria? This book represents an implementation of something that should meet
your needs. Because you are reading this book after its completion, you don’t
have an opportunity to influence the acceptance criteria. But let me list the crite-
ria here and see if this is what you are after.

In English classes, the teacher emphasized that a story should contain a who,
what, when, where, why, and how. So I’ve made that the goal of this book. It
explains

1

Wow! eBook <WoweBook.Com>

ptg

 Introduction222

• Who creates acceptance tests

• What acceptance tests are

• When the acceptance tests should be created

• Where the acceptance tests are used

• Why acceptance test-driven development is beneficial

• How the acceptance tests are created

By the end of this book, the expectation is that you should understand how
testable requirements can make the software development process more enjoy-
able (or at least less painful) and help in producing higher-quality products.,
Let’s begin with a brief discussion on the why, what, where, and who issues.

Why ATDD Is Beneficial

Let’s start with the answer to the why question. Jeff Sutherland, the cocreator
of Scrum, has metrics on software productivity [Sutherland01]. He has found
that adding a quality assurance person to the team and creating acceptance tests
prior to implementation doubles the team’s productivity. Your actual results
may vary, but teams adopting ATDD have experienced productivity and quality
increases. Mary Poppendieck says that creating tests before writing code is one
of the two most effective and efficient process changes for producing quality
code. (The other is frequent feedback.) [Poppendieck01] Customer-developer-
tester collaboration reduces unnecessary loops in the development process. As
Jerry Weinberg and Don Gause wrote, “Surprising, to some people, one of the
most effective ways of testing requirements is with test cases very much like
those for testing the completed system” [Weinberg01].

If you are going to test something and document those tests, it costs no more
to document the tests up front than it does to document them at the end. But
these are more than just tests. As stated in Chapter 3, “Testing Strategy,” “The
tests clarify and amplify the requirements.” An acceptance test is “an authorita-
tive and reliable source of what the software should do functionally” [Adzic01].

What Are Acceptance Tests?

Acceptance tests, as used in this book, are defined by the customer in collabora-
tion with the developer and tested and created prior to implementation. They are
not the traditional user acceptance tests [Cimperman01], which are performed

Wow! eBook <WoweBook.Com>

ptg

Testable Requirements 3

after implementation “by the end user to determine if the system is working
according to the specification in the contract.” [Answers01] They are also not
system tests which are usually independently written by testers by reading the
requirements to ensure that the system meets those requirements. [Answers02]
All three are related in that they are all black box tests—that is, they are inde-
pendent of the implementation. It is the time and manner of creation in which
they differ.

Where Are Acceptance Tests Used?

The concept of an acceptance test is defined by the intent of the test, not its
implementation. You can apply an acceptance test at the unit, integration, or
user interface level. You can use it as a validation test, which allows input to or
produces outputs from an application installed in the customer’s environment.
Further, you can use it as a design verification test that ensures a unit or com-
ponent meets it intended responsibility. In either case, the test makes certain the
application is acceptable to the customer.

Who Creates the Acceptance Tests?

This book refers to a triad: the customer, developer, and tester. The power of
three people working together [Crispin01] can create the bests acceptance tests.

If the triad writes the tests together, the distinction between user acceptance
tests and system tests is practically eliminated. As will be shown, the three roles
of customer, developer, and tester may be played by different individuals or by
the same individual with different focuses.

What Types of Software Are Covered?

The acceptance tests covered in this book revolve mainly around requirements
that have determinable results. These results are typical in business situations.
You place an order, and the order total is determinable. On the other hand, you
have a requirement to find the shortest possible path that goes through a number
of points. For example, you want to determine the shortest driving trip that
travels over every road in the United States. For a small number of roads (such
as the interstate highways), the result is determinable by brute force. However,
for a large number of roads, the answer is not determinable. You can have a test
that checks the output of one way of solving the problem against the output of
another way. But that does not guarantee that the shortest solution has been
found.

Wow! eBook <WoweBook.Com>

ptg

 Introduction4

How Will We Get to ATDD?

The answers to how and when the acceptance tests should be created are shown
by a continuous example throughout this book. Each step in their creation and
use is covered. Some books are devoted entirely to a single step and go into
much greater detail than does this book. In particular, the references offer links
for tools to automate the acceptance tests, to the agile process itself, to require-
ment elicitation, and to testing the other qualities of a software system (usabil-
ity, performance, and so on).

The continuous example for Sam’s CD Rental Store follows Sam’s story in
Prefactoring—Extreme Abstraction, Extreme Separation, Extreme Readability.
That book used the tale as the context for examples of good design. Prefactoring
covered some of the aspects of developer-customer interaction, because a good
design requires understanding the customer’s needs. Prefactoring’s focus was on
the internal software quality. This book’s focus is on externally visible quality.
The two books complement each other.

Organization

The material is presented in six parts. The first part documents the tale of the
triad members—customer, developer, tester—as they create a software system.
It shows how acceptance testing permeates the entire process, from the project
charter to individual stories. The second part covers details in acceptance test-
ing, as simplification by separation. The third part explores general subjects,
such as test presentation and valuation. The fourth part includes case studies
from real-life situations. In some instances, the studies have been simplified to
show only the relevant parts. The fifth part involves more technical issues, as
how to handle test setup. The sixth part offers the appendices, which give ad-
ditional information on topics as business value and test automation. For those
who want to get the quick summary of ATDD and its benefits, read Chapter 25,
“Retrospective and Perspective.” Those who want to read the experiences of
others, see the Epilogue.

Example Tables

The book presents tests with examples in tables rather than in narrative form.
These tables follow the concepts of David Parnas, who states, “The tables con-
stitute a precise requirements document” [Parnas01]. Some people prefer free
text over tables. Those who prefer the narrative can easily convert tables to this
form. The reverse is usually more difficult. Tables are familiar to spreadsheet
users. Many business rules have conditions that are more easily tested with a

Wow! eBook <WoweBook.Com>

ptg

ATDD Lineage 5

table. From an analysis point of view, you can often find missing conditions by
examining the values in a table’s columns.

Automation After Communication

I emphasize acceptance tests as customer-developer-tester communication. If
you don’t have an acceptance test, you have nothing to automate. I do not advo-
cate a particular test automation framework. When you automate an acceptance
test that includes its accompanying requirement, you get what many term an
executable specification [Melnik02], [Melnik03].

Acceptance tests can be manual. But if they are automated, you can use them
as regression tests to ensure that future changes to the system do not affect
previously implemented requirements. So the most effective use of the tests is as
an executable specification. Appendix C, “Test Framework Examples,” shows
examples of test automation using several frameworks. The code for the exam-
ples is available online at http://atdd.biz.

ATDD Lineage

A Chinese proverb says, “There are many paths to the top of the mountain, but
the view is always the same.” And many of the paths share the same trail for
portions of the journey. Although acceptance testing has been around for a long
time, it was reinvigorated by extreme programming [Jefferies01]. Its manifes-
tations include ATDD as described in this book, example-driven development
(EDD) by Brian Marick [Marick01], behavior-driven development (BDD) by
Dan North [Chelimsky01], story test-driven development (SDD) by Joshua Ker-
ievsky of Industrial Logic [Kerievsky01], domain-driven design (DDD) by Eric
Evans [Evans01], and executable acceptance test-driven development (EATDD)
[EATDD01]. All these share the common goal of producing high-quality soft-
ware. They aid developers and testers in understanding the customer’s needs
prior to implementation and customers being able to converse in their own do-
main language.

Many aspects are shared among the different approaches. ATDD in this
book encompasses aspects of these other approaches. I’ve documented the parts
that come specifically from the other driven developments (DDs), including
Brian Marick’s examples, Eric Evan’s ubiquitous language, and Dan North’s
given-when-then template. The most visible differences are that the tests here
are presented in table format rather than in a more textual format, such as
BDD’s Cucumber language, and they concentrate on functionality instead of the
user interface. This book’s version of ATDD matches closely that described by

Wow! eBook <WoweBook.Com>

http://atdd.biz

ptg

 Introduction6

Lasse Koskela [Koskela01] and Gojko Adzic [Adzic01] and follows the testing
recommendations of Jim Coplien [Coplien01].

One of the most well-known DDs is test-driven development (TDD) by Kent
Beck [Beck01]. TDD encompasses the developer’s domain and tests the units
or modules that comprise a system. TDD has the same quality goal as ATDD.
The two interrelate because the acceptance tests can form a context in which to
derive the tests for the units. TDD helps creates the best design for an applica-
tion. A TDD design issue would be assigning responsibilities to particular mod-
ules or classes to pass all or part of an acceptance test.

Acceptance test driven development:
The answer is 42. Now implement it.

Summary

• Testable requirements have acceptance tests associated with them.

• ATDD involves developing requirement tests prior to implementation.

• ATDD can improve productivity.

• Acceptance tests are developed collaboratively between the customer,
developer, and tester.

Wow! eBook <WoweBook.Com>

ptg

P A R T I

The Tale

This part tells the tale of a team developing a project. It starts with
an exploration of testing. The team develops a charter followed by a
set of high-level requirements. Requirements are broken down into
stories. Stories are detailed with use cases and business rules. Accep-
tance tests are developed for every business rule and every scenario.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

Chapter 1

Prologue

“Begin at the beginning,” the King said, very gravely, “and go on till you
come to the end; then stop.”

Lewis Carroll, Alice’s Adventures in Wonderland

Say hello to testable requirements. You are introduced to acceptance tests and
discover the benefits of using them. You are also introduced to the team that
will create them.

Ways to Develop Software

Different teams have different ways to develop software. Here are examples of
two ways.

One Way

It’s the last day of the iteration. Tom, the tester, is checking the implementa-
tion that Debbie, the developer, handed over to him earlier that day. He goes
through the screens, entering the test case data he created. He discovers that
the results aren’t what he had assumed they should be. He’s unable to contact
Cathy, the customer, for clarification as to whether he made the correct assump-
tions. There’s nothing left to do but write up a defect to be addressed during the
next iteration, leaving less time to develop new features.

Another Way

It’s the last day of the iteration. Debbie, the developer, has run through the ac-
ceptance tests that Cathy, Debbie, and Tom created prior to Debbie starting
implementation. Tom quickly runs through the same acceptance tests and then

9

Wow! eBook <WoweBook.Com>

ptg

Chapter 1 Prologue111000

starts doing more testing to get a feeling for how the implementation fits into
the entire workflow. At the review the next morning, Cathy agrees that the story
is complete.

The Difference

What’s the difference between the first way and the second way? In the first case,
no tests were created upfront. The developer had nothing to test against, so she
relied on the tester to perform verification. The tester needed more details from
the customer. Feedback as to success or failure of a requirement implementation
was delayed. Every requirement story in the second situation has one or more
tests associated with it, making each a testable requirement. The tests were de-
veloped by the customer, tester, and developer prior to implementation. As we
will see in later chapters with detailed examples, these tests clarify the require-
ments. They provide a measure of doneness to all the parties.

If a requirement does not have a test, it is not yet demonstrated to be a test-
able requirement. If you cannot test that a requirement has been fulfilled, how
do you know when it has been met? This does not mean that the test is easy
to perform. Nor can tests be fully specified; there are always assumptions. But
there must be at least an objective test so that the customer, developer, and tester
have a common understanding of what meeting the requirement means.

The Importance of Acceptance Tests

In my classes, I often start with a dialogue to emphasize the importance of ac-
ceptance tests. It usually goes something like this:

I ask, “Does anyone want a fast car?”
Someone always says, “Yes, I want one.”
“I’ll build you one,” I reply. I turn around and work furiously for 5 seconds.

I turn back around and show the student the results. “Here’s your car,” I state.
“Great,” the student answers.
“It’s really fast. It goes from 0 to 60 in less than 20 seconds,” I proudly

explain.
“That’s not fast,” the student retorts.
“I thought it was fast. So give me a test for how fast you want the car to be,”

I reply.
“0 to 60 in less than 4.5 seconds,” the student states.
I turn back around, again work quickly, and then face the student again.

“Here it is: 0 to 60 in 4.5 seconds. Fast enough?” I ask.
“Yes,” the student answers.
“Oh, by the way: 60 is the top speed,” I state.

Wow! eBook <WoweBook.Com>

ptg

The Importance of Acceptance Tests 11

“That’s not fast,” the student retorts.
“So give me another test,” I ask.
“The top speed should be 150,” the student demands.
Again, I quickly create a new car. “Okay, here it is: 0 to 60 in 4.5 seconds.

Top speed of 150. Fast enough?” I again ask.
“That should be good,” the student retorts.
“Oh, by the way: It takes two minutes to get to 150,” I let slide.
By this time, my point has been made. Getting just a requirement for a “fast

car” is not sufficient for knowing what to build. The customer needs to create
some tests for that requirement that clarify what exactly is meant by “fast.”
Without those tests, the engineers may go off and create something that they
think meets the requirement. When they deliver it to the customer, the customer
has a negative reaction to the creation. The item does not meet his needs, as he
thought he had clearly stated in saying, “the car must be fast.”

Having acceptance tests for a requirement gives developers a definitive stand-
ard against which to measure their implementation. If the implementation does
not meet the tests, they do not have to bother the customer with something that
is noncompliant. If each acceptance test represents a similar effort in creating the
implementation, the number of passing tests can be used as a rough indication
of how much progress has been made on a project.

Absolute Tests Are Not Absolutely Fixed

Although the tests are absolute, such as “0 to 60 in less than 4.5 sec-
onds,” they also form a point of discussion between the customer and
the engineers. If the engineers work for a while and the car accelerates in
4.6 seconds, they can discuss with the customer whether this is sufficient.
In particular, this would occur when the engineers discover that getting
the time down to 4.5 seconds might take considerably more development
time. In the end, the customer is the decision maker. If 4.5 seconds is an
absolute requirement to sell the car, the extra development cost is worth
it. If it is not, money will be saved. 1

I’d like to clarify a couple of terms that are used throughout the book: accept-
ance criteria and acceptance tests. Acceptance criteria are general conditions of
acceptance without giving specifics. For the car example, these might be “accel-
eration from one speed to another,” “top speed,” and “must feel fast.” Accept-
ance tests are specific conditions of acceptance, such as “0 to 60 in less than

 1 . If you can agree up front how much that extra 0.1 second is worth, developers can
make quick decisions. See Don Reinertsen [Reinertsen01] for lean economic models.

Wow! eBook <WoweBook.Com>

ptg

Chapter 1 Prologue12

4.5 seconds.” Each acceptance test has unstated conditions. For example, an
unstated condition could be that the acceleration is measured on a flat area, with
little wind. You could be very specific about these conditions: an area that has
less than .1 degree of slope and wind less than 1 mile per hour. If necessary for
regulatory or other purposes, you could add these to the test. But you should
avoid making the test a complex document.

A few facets that differentiate acceptance tests from other types of tests, such
as unit tests, are

• The customer understands and specifies acceptance tests.

• Acceptance tests do not change even if the implementation changes.

System and Team Introduction

The principles and practices of acceptance test-driven development (ATDD) are
introduced through the tale of the development of a software system. The story
originated in my book Prefactoring—Extreme Abstraction, Extreme Separa-
tion, Extreme Readability [Pugh02]. That book emphasizes how developers can
create a high-quality solution for the system. This book highlights the customer-
developer-tester interaction in creating and using acceptance tests in developing
the system.

The System

Sam, the owner of Sam’s Lawn Mower Repair and CD Rental Store, had a
lawn mower repair shop for a number of years. He noticed that people coming
into the shop had circular devices hanging on their bodies. It turned out they
were Sony Discmans. Being the inquisitive type, he discovered that his customers
liked to listen to music while they mowed the lawn. So he added CD rental to
the services his store offered.

Business has been booming, even though the Sony Discman is no longer being
used. People are now coming in with little rectangular boxes hanging around
their necks or sitting in their pockets. They are renting more CDs than ever and
returning them quickly—in as little as an hour. Sam’s paper system is having a
hard time keeping up, and it is becoming difficult to produce the reports needed
to track the inventory. Sam is planning to open a second store. Before he does
that, he figures that he needs to obtain a software system, or his issues will just
double.

Wow! eBook <WoweBook.Com>

ptg

System and Team Introduction 13

Sam got a recommendation and called Debbie. She works with Tom in an
agile development shop. Sam selected that shop to develop the system.

The People

Sam represents the project sponsor for the new system. His wife Cathy takes
care of the logistic side of the business. She does the bookkeeping, handles the
inventory, and places orders for new CDs. Cathy plays the role of customer—
the one requesting the application. Along the way, as you’ll see, Cathy is intro-
duced to software development and in particular to ATDD. Other interested
parties include Sam’s sister Mary and his brother-in-law Harry, who frequently
help out at the store. Their son Cary is a clerk at the store. He will be using the
new system.

Debbie is the developer and Tom is the tester. They work as a pair to under-
stand and implement what Cathy needs. The terms developer and tester are
often related to titles. In this book, these terms refer to what Debbie and Tom
focus on. The development focus is to create an implementation that does what
it is supposed to do. The testing focus is to check that the implementation does
precisely that and does not do what it should not.

Focus may not be correlated with the titles developer and tester. In many
agile processes, such as Scrum, there are no titles on teams [Larman01]. Any
two people may pair together, with one focusing on testing and one on imple-
menting. It’s possible that a single person may focus both ways on a particular
requirement. The entire team is shown in Figure 1.1.

Sam
the

Sponsor

Cathy
the

Customer

Tom
the

Tester

Debbie
the

Developer

Cary,
Mary,
Harry
the

Users

Figure 1.1 The Team

Wow! eBook <WoweBook.Com>

ptg

Chapter 1 Prologue14

Summary

• A testable requirement has one or more acceptance tests.

• An acceptance test is a standard to measure the correctness of the imple-
mentation.

• Acceptance tests are created in collaboration with the customer.

Wow! eBook <WoweBook.Com>

ptg

Chapter 2

Lean and Agile

“You’re a lean, mean, fighting machine!”

Bill Murray as John Winger in Stripes

The triad of Cathy the customer, Debbie the developer, and Tom the tester
has its first meeting. Debbie describes the differences between traditional devel-
opment and acceptance test-driven development (ATDD). It’s explained how
ATDD fits into lean and agile.

The Triad and Its Units

Many books on agility refer to the developer team and the business team. Names
often have a connotation. On a football field, two teams compete to see who can
score more points and win the game. On a single football team, there is an of-
fensive unit, a defensive unit, and a special teams unit. The offensive’s unit job is
to score points. The defensive’s unit responsibility is to keep the other team from
scoring. The special team unit has the goal of scoring points when it receives a
kicked ball and preventing the other team from scoring when it kicks the ball.
All three units must do their job to win the game.

Although each unit has a primary job, it doesn’t stop there. If the offensive
unit fumbles the football and the other team recovers, it does not simply stop
playing and call for the defensive unit to come on the field. Instead, it plays
defense until the end of the play.

15

Wow! eBook <WoweBook.Com>

ptg

Chapter 2 Lean and Agile111666

The three basic units in a software project are the customer unit, the devel-
oper unit, and the testing unit. 1 The customer unit (which may include product
owner, business analysts, and subject matter experts) determines the require-
ments, creates acceptance tests, and sets priorities. The developer unit imple-
ments the requirements and ensures the implementation meets the acceptance
tests. The testing unit checks that an implementation does what it is supposed to
do and does not do what it is not supposed to do. The testers help the customer
unit develop acceptance tests, and the developer unit passes those tests. The
triad works together to produce quality software. 2

We start the story with Debbie, representing the developer unit, explaining
to Cathy, the customer unit, two ways that teams approach software develop-
ment. Tom, the testing unit, is sitting in the meeting of the triad (see Figure 2.1).

Cathy
the

Customer

Tom
the

Tester

Debbie
the

Developer

Figure 2.1 The Triad

2. There are other players, such as the stakeholder who owns the charter (see Chapter
5, “The Example Project”) and the users who use the system. Their roles will be
introduced at appropriate times.

1. As suggested in the previous chapter, some agile teams work more like a soccer team
or a basketball team. Players have particular strengths, but everyone plays both
defense and offense. The testing unit consists of players currently acting one way—
focused on testing—but the same players may be part of the developer unit that acts
another way—focused on implementation.

Wow! eBook <WoweBook.Com>

ptg

Post-Implementation Tests 17

Post-Implementation Tests

Debbie and Tom meet with Cathy to explain how the development process
works. Debbie begins with how the flow often works and compares it to how
Debbie and Tom prefer to work.

Debbie introduces the chart shown in Figure 2.2.

“Cathy, this is how many development teams work to implement a require-
ment.3 As a developer, I elicit a requirement from the customer. Then I gather
detail on the requirement, followed by designing and coding an implementation.
I turn over the program to a tester like Tom. He develops functional tests to
check that the requirement passes. He works with the customer or his repre-
sentative to create and run some acceptance tests.”

“If the functional tests pass, as well as other tests, such as performance and
usability, the system is ready to be deployed. Now if everything is perfect, the
program passes through these stages in a straight line. But perfection only occurs
in fairy tales. In reality, there are often misunderstandings. We don’t always use
the same words with the same meaning. You may say always when you really
mean usually. Or I may hear usually and think it means always.”

“Now when a misunderstanding is found, it needs to be corrected. If Tom
finds that misunderstanding during testing, we have to figure out how to correct
it. It could be that I simply made a mistake in coding. So you see a loopback
shown by the line from test back to code in Figure 2.2. Tom tells me about the
issue he discovered, and I correct it.”

“It could be a misunderstanding that occurred while gathering details of a
requirement. In that case, Tom and I would revisit the requirement. He might
have interpreted one way and I might have interpreted another. We would check
back with you to see which one of our interpretations was correct or whether
you meant something else entirely different.”

 3 . Particularly any team that does not use some form of test-driven development
(TDD).

Gather
details,
design,
code

Develop
acceptance
tests and
execute

Elicit a
requirement

Figure 2.2 Typical Development Flow

Wow! eBook <WoweBook.Com>

ptg

Chapter 2 Lean and Agile18

“This cycling back causes a delay in deploying the product, as well as extra
cost in creating the product. So Tom and I like to operate in a different mode
that uses quick feedback.”

Quick Feedback Better Than Slow Feedback

Before describing Debbie and Tom’s alternative process, let’s look at the idea
of feedback. Feedback involves using current output to influence future output.
Feedback in software development is not quite the same as feedback in control
systems. In control systems, values from the output are fed back into the input
to regulate the output. In audio systems, the output sound from the speakers can
accidentally get back into the input to the microphone. That positive feedback
can cause an explosive sound to emit from the speakers. Instead, think of soft-
ware feedback as a listener commenting that the sound from your stereo speak-
ers is not the desired level. You adjust the amplifier volume to make the sound
closer to what the listener likes.

Imagine you want to show off your new stereo to someone. You turn it on,
but the listener says he cannot hear the music very well. You constantly increase
the volume. If the listener gives you frequent feedback, you’ll stop the increase
just after you’ve increased past where he wanted it to be. So the volume will be
pretty close to what he wants. You may home in even further by reducing the
volume more slowly. If the listener does not give you frequent feedback, you will
increase the volume well above what he wants and then decrease it well below.
You will continually cycle between too loud and too quiet.

Quick Feedback on Mileage

Quick feedback promotes different behavior. Energy-efficient cars, such
as the Toyota Prius and the Honda Insight, have instantaneous mileage
displays. When you drive one of these cars, you find out quickly which ac-
tions decrease or increase mileage. For example, rapid acceleration shows
up as really low mileage. Trying to beat the car next to you when the light
turns green quickly indicates that you have used a lot of gas. Drivers of
cars without mileage displays sometimes check their mileage every time
they fill up the tank. But then it is hard to determine what actions during
the previous tank-full caused either good or bad mileage. All that you can
ascertain is that something during that period caused the mileage to vary.

Quick feedback means less delay. Quick feedback is good. The output will be
closer to the desired outcome.

Wow! eBook <WoweBook.Com>

ptg

Preimplementation Tests 19

Preimplementation Tests

“So how are things going to be different working with you?,” Cathy asks.
Debbie starts to describe another process. She shows Cathy the chart in Fig-

ure 2.3.

“Here’s the process that Tom and I use. After we elicit a requirement from
you, Cathy, we work together to create some acceptance tests for the require-
ment. These are specific examples of the requirement in action. When I’m cod-
ing, I’ll use these tests to ensure that my implementation meets the tests. When it
does, I’ll turn it over to Tom for the other types of tests that are discussed later
[in the next chapter].”

Tom chimes in. “This is a small application relative to some we’ve worked
on in the past. Debbie’s machine will be almost an exact duplicate of your com-
puter where the application will be deployed. So when she turns the application
over to me and I run it on the test system that exactly matches your computer, I
don’t expect any acceptance tests that we’ve created to fail.”

“What this means,” Debbie continues, “is that the three of us will be creat-
ing these tests together to make sure that we all have a clear understanding of
what a requirement means. When a requirement is delivered, it will work as
understood.”

“I really don’t know anything about testing,” Cathy states. “So how will I
help?”

Debbie replies, “The test creation starts with getting examples from you on
how a requirement should work. Tom and I can take these examples and turn
them into the actual tests.”

“We will not be doing this up front for all the requirements. As you decide
what the next requirement to work on is, we’ll get together and work on the
details. I know you have to work at the store and there is no room for us to set
up our computers there. But because we’re only a couple of miles away and
there is a great bike path between our places, we’ll ride over for these meetings.
We’ve found that meeting face to face is much more effective than having a long
conference call on the phone” [Cockburn01].

Gather
details by

developing
acceptance

tests

Elicit a
requirement

Design,
code, and
execute

acceptance
tests

Figure 2.3 ATDD Flow

Wow! eBook <WoweBook.Com>

ptg

Chapter 2 Lean and Agile20

Cathy interjects, “I’m not always available. I have a lot of other work that
Sam needs me to do.”

Debbie answers, “I understand. We’ll schedule the face-to-face meetings at
your convenience. For things that are pretty standard in software, such as add-
ing an item, Tom and I will make up the examples for the tests and then review
them with you before I start implementing. If it’s a quick question, we’ll give you
a call. The only thing we ask is that you get back to us relatively soon. We can
often work on other pieces of the problem, but if the question regards something
that is fundamental to the design, we’ll need a quick answer. And we’ll identify
the difference between that which we need as soon as possible and that which
can wait a little while. Of course, if the little while turns into a day or a week,
your project will be delayed and there will be more costs.”

Lean and Agile Principles

ATDD is based on some lean principles and some agile principles. The lean
principles come from Mary and Tom Poppendieck [Poppendieck02], [Pop-
pendieck03], [Poppendieck04]. 4 The agile principles are listed in “The Agile
Manifesto,” which is a widely recognized statement on how to better develop
software [Agile01].

The Poppendiecks developed principles of lean software development derived
from lean manufacturing. One principle is to reduce waste in a process. Creating
acceptance tests up front reduces waste by decreasing the loopbacks from testing
back to coding.

Another principle is to build in integrity. Acceptance tests for each portion of
the system help to ensure that the modules are high quality. The tests are run as
each module is developed, not when the developers have completed the entire
system.

The collaboration between the members of the triad helps amplify learning,
which is another lean principle. The members learn from each other about the
business domain and the development and testing issues.

The triad is one manifestation of the Agile Manifesto principle that “busi-
ness people and developers must work together daily throughout the project.”
Although they may not be physically together, they will be working together
continuously.

Another agile principle is that “working software is the primary measure
of progress.” With the acceptance tests, Debbie and Tom can deliver not only

 4 . See [Shalloway01] and [Larman01] for another explanation of lean principles.

Wow! eBook <WoweBook.Com>

ptg

Summary 21

working software, but software that delivers more precisely what Cathy is ask-
ing for.

Summary

• The triad consists of the three units—customer, developer, and tester—
that collaborate to create high-quality software.

• Quick feedback is better than slow feedback.ATDD reduces unnecessary
loopbacks.

• ATDD is lean and agile.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

Chapter 3

Testing Strategy

“How do I test thee? Let me count the ways.”

Elizabeth Barrett Browning (altered)

The different types of testing that occur during development are explained to
give the context in which acceptance tests are developed. The tests that the cus-
tomer provides are only one part of the testing process.

Types of Tests

Acceptance tests are one part of the testing strategy for a program. The easiest
way to describe the full set of tests for an application is to use the testing matrix
from Gerard Meszaros [Meszaros01]. The matrix in Figure 3.1 shows how ac-
ceptance tests fit into the overall picture.

Customer tests encompass the business facing functional tests that ensure the
product is acceptable to the customer. These functional tests are the acceptance
tests described in this book. The result of almost every acceptance test can be
expressed in yes or no terms. Examples are, “When a customer places an order
of $100, does the system give a 5% discount?” and, “Is the Edit button disabled
if the account is inactive?”

As shown in lower right of the matrix, there are other requirements for a soft-
ware system checked by the property tests. These include nonfunctional require-
ments (often called the ilities or quality attributes) such as scalability, reliability,
security, and performance. 1 Some of the tests for these requirements can be
expressed in questions with yes or no answers. For example, “If there are 100

23

 1 . Some people separate performance (and security for that matter) because it does not
end in ility.

Wow! eBook <WoweBook.Com>

ptg

Chapter 3 Testing Strategy222444

users on the system and they are placing orders at the same time, does the system
respond to each one of them in less than 5 seconds?” However, for other quality
attributes, the question can be asked, but the answer is unknowable, such as, “Is
the system secure from all threats?” For the user to accept the system, the sys-
tem needs to pass these nonfunctional tests. So the property tests are sometimes
referred to as nonfunctional acceptance tests.

Usability tests are in a separate category. You might create some factual tests,
such as, “Given a certain level of user, can he pay for an order in less than 30
seconds?” or, “Given 100 users ranking the system usability on a scale from
1 to 10, is the average greater than 8?” But often, usability is more subjective:
“Does this screen feel right to me?” or, “Does this workflow match the way I do
things?” Usability testing is strictly manual. No robot program can measure the
usability of a system. Often the customer is of the mind, “I’m not sure what I’d
like, but I’ll know it when I see it.” It’s difficult to write a test for that [Constan-
tine01], [Nielsen01], [Aston01].

Exploratory tests are tests whose flow is not described in advance [Petti-
chord01]. An exploratory tester does parallel test design, execution, result inter-
pretation, and learning. Exploratory testing may disclose defects undiscovered
by other forms of testing [Whittaker01], [Bach01].

The term has also been applied to a situation in which all team members—
Tom, Cathy, and Debbie—take on the persona of a user and go through the

Customer
Tests

Business Intent
(Executable Specification)

Unit
Tests

Developer Intent
(Design of the Code)

Property
Testing

Is it responsive,
secure, scalable?

Manual

Technology
Facing

Business
Facing

Support
Development

Critique
Product

Purpose of Tests

Component
Tests

Architect Intent
(Design of the System)

Manual

Per Functionality Cross-Functional
Kind of Behavior

Diagram adapted
from Mary

Poppendieck and
Brian Marick

Automated
various

Automated
xUnit

Special-Purpose
Tool-Based

Automated
xUnit

Usability
Testing

Exploratory
Testing

Is it pleasurable?

Is it self-consistent?

Figure 3.1 The Testing Matrix (Source: Meszaros, Xunit Test Patterns: Refactoring
Test Code, Fig 6.1 “Purpose of Tests” p. 51, © 2007 Pearson Education, Inc. Repro-
duced by permission of Pearson Education, Inc.)

Wow! eBook <WoweBook.Com>

ptg

Where Tests Run 25

system based on the needs and abilities of that user. Because a system has to be
working to be explored, these tests cannot be created up front. But they can be
performed whenever the program is in a working condition.

Unit tests are created by Debbie and other developers in conjunction with
writing code. They aid in creating a design that is testable, a measure of high
technical quality. Unit tests also serve as documentation for the way the internal
code works.

Component tests verify that units and combinations of units work together
to perform the desired operations. As we will see later, many of the unit and
component tests are derived from the acceptance tests [Wiki03].

All types of testing are important to ensure delivery of a quality product. 2

This book discusses mainly acceptance tests—the functional tests that involve
collaboration between the business customer, the developer, and the tester.

Where Tests Run

Acceptance tests, as defined in this book, can be run on multiple platforms at
multiple times. An example of some of the platforms is shown in Figure 3.2.
Debbie runs unit tests on her machine. She can also run many acceptance tests,
particularly if they don’t require external resources. For example, any business
rule test can usually run on her machine. In some instances, she may create test
doubles for external resources to avoid having tests depend on them. The topic
of test doubles will be covered in Chapter 11, “System Boundary.”

On a larger project, Debbie and the other developers would merge their code
to a build or integration platform. The unit tests of all the developers would be
run on this platform to make sure that the changes one developer makes in his
code would not affect the changes that other developers make. The acceptance
tests would be run on this platform if the external resources or their test doubles
are available. In Sam’s project, Debbie’s machine acts as both the developer
platform and the integration platform because she has no other developers on
the project.

Once all tests pass on the build/integration platform, the application is
deployed to the test platform. On this platform, the full external resources, such
as a working database, are available. All types of tests can be run here. But often
the unit tests are not run, particularly if the application is deployed as a whole
and not rebuilt for the test platform.

Cathy, the customer, and other users try out the user interface to see how
well it works. Tom can do some exploratory testing. If this were a system that

 2 . See [Crispin02] for a discussion of how to implement the other testing types.

Wow! eBook <WoweBook.Com>

ptg

Chapter 3 Testing Strategy26

required it, the security testers and the performance testers could have their first
go at the application.

Once the customer is satisfied with the outcome of all tests, the application
is deployed to the production platform. There is still a possibility that bugs
may show up. Users may do entirely unexpected things, or there may be some
configuration that causes problems for the application. Debbie and Tom have
a measure of quality that is the number of bugs in production. They are called
escaped bugs because they escaped discovery from all other testing.

Test Facets

Figure 3.3 shows examples of positive and negative testing. Positive tests ensure
that the program works as expected. Negative testing checks to see that the
program does not create unexpected results. Acceptance tests that the customer
thinks about are mostly in the “Specified Effect” box. The ones that Tom and

Developer’s
Platform

Build /
Integration
Platform

Test Platform

Property Tests

Exploratory
Tests

Unit
Tests

Acceptance Tests
(Customer

Tests)

Component
Tests

Usability
Tests

Figure 3.2 Where Tests Run

Wow! eBook <WoweBook.Com>

ptg

Test Facets 27

Debbie come up with are in the other three boxes. Tom, as the tester, has a par-
ticular focus on finding unexpected results.

Valid Input

Invalid Input

Expected Result

Specified effect

Any effectsSpecified error handling

Unspecified effect

Unexpected Result

Figure 3.3 Positive and Negative Testing

Control and Observation Points

Tests are often run from the external view of the system. Bret Pettichord talks
about control points and observation points [Pettichord01]. A control point is
the part of the system where the tester inputs values or commands to the system.
The observation point is where the system response is checked to see that it is
performing properly. Often the control point is the user interface and the output
is observed on the user interface, a printed report, or a connection to an external
platform. As seen in the next chapter, it is often easier to run many tests if you
have control and observation points within the system.

New Test Is a New Requirement

Requirements and tests are linked. You can’t have one without the other. They
are like Abbott and Costello, Calvin and Hobbes, nuts and bolts, or another
favorite duo. The tests clarify and amplify the requirements [Melnik01]. A test
that fails shows that the system does not properly implement a requirement. A
test that passes is a specification of how the system works. Any test created after
the code is written is a new requirement or a new detail on an existing require-
ment.3

If Cathy comes across a new detail after Debbie has implemented the code,
the triad needs to create a new test for that detail. For example, suppose there
is an input field that doesn’t have limits on what can go in it. Then Cathy real-
izes that there needs to be a limit. The triad would create tests to ensure that
the limit is checked on input. The requirement that there is a limit and the tests
that ensure it is checked are linked. Because the tests did not exist before Debbie
finished the code, it is not a developer bug that the limit was not checked. It is

3. Thanks to Scott Bain and Amir Kolsky for the discussion where this idea occurred.

Wow! eBook <WoweBook.Com>

ptg

Chapter 3 Testing Strategy28

just a new requirement that needs to be implemented. Some people might call
it an analysis bug or a missed requirement. Or you can simply say, “You can’t
think of everything” and call it a new requirement.

Summary

• Testing areas include

• Acceptance tests that are business-facing functionality tests

• Tests that check component and module functionality

• Unit tests that developers use to drive the design

• Usability, exploratory, and quality attribute (reliability, scalability,
performance)

• Functionality tests should be run frequently on developer, build/
integration, and test platforms.

• Tests and requirements are linked together.

Wow! eBook <WoweBook.Com>

ptg

Chapter 4

An Introductory
Acceptance Test

“If you don’t know where you’re going, you will wind up somewhere
else.”

Yogi Berra

An example of an acceptance test is presented, along with four ways that you
can execute an acceptance test.

A Sample Business Rule

Here is an example from a previous project where Debbie and Tom created tests
in collaboration with the customer. The business representative, Betty, presented
the two of them with a business rule for giving discounts that she had obtained
from one of the stakeholders. The stakeholder wanted to give discounts to the
firm’s customers based on what type of customer they were. Debbie had already
completed implementing a previous requirement that determined the customer
type. Here’s the rule that Betty gave them:

If Customer Type is Good and Item Total is less than or equal to $10.00,

Then do not give a discount,

Otherwise, give a 1% discount.

If Customer Type is Excellent,

Then give a discount of 1% for any order.

If Item Total is greater than $50.00,

Then give a discount of 5%.

29

Wow! eBook <WoweBook.Com>

ptg

Chapter 4 An Introductory Acceptance Test 333000

This rule may seem clear. It uses consistent terms, such as Customer Type
and Item Total. Debbie and Tom had previously gotten from Betty the defini-
tions of those terms [Evans01]. For example, Item Total did not include taxes or
shipping. But even with that consistency, there was an issue. Tom and Debbie
looked at the rule and tried to figure out what the discount percentage should
be if a customer who is good had an order total greater than $50.00. So Betty,
Debbie, and Tom made up a table of examples. 1

Discount Calculation

Item Total Customer Rating Discount Percentage?

$10.00 Good 0%

$10.01 Good 1%

$50.01 Good 1% ??

$.01 Excellent 1%

$50.00 Excellent 1%

$50.01 Excellent 5%

The answers in this table of examples are going to be used to test the imple-
mentation. The first two rows show that the limit between giving a good cus-
tomer no discount or a 1% discount is $10.00. The “less than or equal to” in
the business rule is pretty clear. The tests just ensure that the implementation
produced that result. The ?? was put after the 1 in the third example because it
was unclear to the triad whether that was the right value. To what type of cus-
tomer did the last statement in the rule apply?

The fourth row indicates that the discount for an excellent customer starts at
the smallest possible Item Total. The fifth and sixth entries show that the dis-
count increases just after the $50.00 point. 2

Betty took this table back to the stakeholder. He looked it over and said that
the interpretation was correct. He did not want to give a 5% discount to good
customers. So ?? from that result was removed from that cell. There was now a
set of tests that could be applied to the system. The correct discount amount test
is not just a single case but includes cases for all possible combinations.

Tom suggested other possibilities. For example, what if Item Total was less
than $0.00? Tom asked Betty whether this would ever happen. She said it might

 1 . See Appendix D, “Tables Everywhere,” for an example of putting the rule into a
table.

 2 . There could be even more interpretations of this business rule, as reviewers pointed
out. For example, if Customer Rating is any other type than Good or Excellent,
what should the discount be?

Wow! eBook <WoweBook.Com>

ptg

Implementing the Acceptance Tests 31

be possible, because Item Total could include a rebate coupon that was greater
than the total of the items. So Tom added the following possibilities.

Discount Calculation

Item Total Customer Rating Discount Percentage?

$–.01 Good 0%

$–.01 Excellent 1% ??

Tom explained that it didn’t seem right to apply a discount percentage that
would actually increase the amount that the customer owed. Based on this
example, Betty went back to the stakeholder and confirmed that the percentage
should be 0% if Item Total is less than 0 for any customer. So the table became
as follows.

Discount Calculation

Item Total Customer Rating Discount Percentage?

$–.01 Good 0%

$–.01 Excellent 0%

These examples were the acceptance tests for the system. If Debbie imple-
mented these correctly, Betty would be satisfied. Now it was a matter of how
Debbie and Tom were going to use these tests to test the system.

Implementing the Acceptance Tests

Tom and Debbie needed to apply these tests to the implementation they were
developing. There were at least four possible ways to do this. First, Tom could
create a test script that operates manually at the user interface level. Second,
Debbie could create a test user interface that allows her or Tom to check the
appropriate discount percentages. Third, Debbie could perform the tests using
a unit testing framework. Fourth, Tom and Debbie could implement the tests
with an acceptance test framework. Following are examples of how they could
use each of these possibilities.

Test Script

In this case, the program has a user interface that allows a customer to enter an
order. The user interface flow is much like Amazon or other order sites. The user
enters an order and a summary screen appears, such as the one in Figure 4.1.

Wow! eBook <WoweBook.Com>

ptg

Chapter 4 An Introductory Acceptance Test 32

Order Summary

Count Item Item Price Total

10 Little Widget

Big Widget

$.10 $1.00

1 $9.00 $9.00

Item Total $10.00

Discount $0.00

Taxes $.55

Shipping $2.00

Order Total $12.55

Order Summary

Place Order Cancel

Figure 4.1 Order Interface

What Tom would have to do is to create a script that either he or Debbie
would follow to test each of the six cases in the Discount Calculation table. He
might start by computing what the actual discount amount should be for each
case. Unless the Order Summary screen shows this percentage, this value is the
only output Tom can check to ensure the calculation is correct. Here is an addi-
tion to the table that shows the amounts he needs to look for.

Discount Calculation

Item Total
Customer
Rating

Discount
Percentage?

Discount
Amount? Notes

$10.00 Good 0% $0.00

$10.01 Good 1% $0.10 Discount rounded down

$50.01 Good 1% $0.50 Discount rounded down

$.01 Excellent 1% $0.00 Discount rounded down

$50.00 Excellent 1% $0.50

$50.01 Excellent 5% $2.50 Discount rounded down

Wow! eBook <WoweBook.Com>

ptg

Implementing the Acceptance Tests 33

The script would go something like this:

1. Log on as a customer who has the rating listed in the table.

2. Start an order, and put items in it until the total is the specified amount in
the Item Total column on the test.

3. Check that the discount on the Order Summary screen matches Discount
Amount in the table.

Then the test would be repeated five more times to cover all six cases. Either
Tom or Debbie would do this once the discount feature and order features are
implemented. This test should be run for all possible combinations. That would
have been more difficult if there were more discount percentages for more cus-
tomer types. There’s another possible way to run these tests.

Test User Interface

To simplify executing the tests, Debbie could set up a user interface that con-
nects to the discount calculation module in her code. This interface would be
used only during testing. But having it would cut down on the work involved in
showing that the percentage was correctly determined. The interface might be a
command-line interface (CLI) or a graphical user interface (GUI). For example,
a CLI might be this:

RunDiscountCalculatorTest <item_total> <customer_type>

And when it is run for each case, such as

RunDiscountCalculatorTest 10,00 Good

It would output the result

0

A GUI, such as what’s shown in Figure 4.2, might be connected to the CLI.
Regardless of whether it is a GUI or CLI, the user interface has penetrated

into the system. It exposes a test point within the system that allows easier test-
ing. Here’s an analogy showing the differences between this method and Tom’s
original test script. Suppose you want to build a car that accelerates quickly.
You know you need an engine that can increase its speed rapidly. If you could
only check the engine operation as part of the car, you would need to put the
engine in the car and then take the car on a test drive. If you had a test point
for the engine speed inside the car, you could check how fast the engine sped up
without driving the car. You could measure it in the garage. You’d save a lot of

Wow! eBook <WoweBook.Com>

ptg

Chapter 4 An Introductory Acceptance Test 34

time in on-the-road testing if the engine wasn’t working properly. That doesn’t
mean you don’t need to test the engine on the road. But if the engine isn’t work-
ing by itself, you don’t run the road test until the engine passes its own tests.

If you’re not into cars, Figure 4.3 shows a context diagram. The Order Sum-
mary screen connects to the system through the standard user interface layer.
The Discount Percentage user interface connects to some module inside the sys-
tem. Let’s call that module the Discount Calculator. By having a connection to
the inside, a tester can check whether the internal behavior by itself is correct.

Order
Summary
Screen

User Interface

Discount Percentage
User Interface

Interior of
Application,

Discount
Calculator

Figure 4.3 Context Diagram

xUnit Test

The next way to perform the testing is to write the tests for the Discount Cal-
culator in a unit testing framework. The framework used is usually in the lan-
guage that the program is written in. There is a generic framework called xUnit

Customer Type Good

Item Total 10.01

Percentage 1%

Discount Percentage Test

Figure 4.2 User Interface for Testing

Wow! eBook <WoweBook.Com>

ptg

Implementing the Acceptance Tests 35

that has versions for many programming languages. Here’s a sample of what
these tests look like in Java using Junit [Beck01]. The test would look similar in
TestNG [Beust01], but the order of the parameters would be reversed:

class DiscountCalculatorTest {
 @Test
 public void shouldCalculateDiscountPercentageForCustomer() {
 DiscountCalculator dc = new DiscountCalculator();
 assertEquals(0, dc.computeDiscountPercentage(10.0,
 Customer.Good));
 assertEquals(1, dc.computeDiscountPercentage (10.01,
 Customer.Good));
 assertEquals(1, dc.computeDiscountPercentage (50.01,
 Customer.Good));
 assertEquals(1, dc.computeDiscountPercentage(.01,
 Customer.Excellent));
 assertEquals(1, dc.computeDiscountPercentage(50.0,
 Customer.Excellent));
 assertEquals(5, dc.computeDiscountPercentage(50.01,
 Customer.Excellent));
 }
}

Any time there is a change in the examples that Betty and the stakeholder
use to explain the business rule, Debbie may want these tests to conform to the
changed examples. That’s a bit of waste. The next testing framework can elimi-
nate that waste.

Automated Acceptance Test

Betty, Debbie, and Tom agreed that the examples in the table accurately re-
flected the requirements and there would be less waste if the table did not have
to be converted into another form for testing. Several available acceptance test
frameworks use tables. Some examples are in Appendix C, “Test Framework
Examples.” With these frameworks, you describe the tests with a table similar
to the one for the example.

The following test table works in table-based frameworks, such as the Fit-
Nesse and Fit frameworks. A similar style table can be used in narrative-form
frameworks, such as Cucumber. 3 The table looks practically like the one that
Betty presented to the stakeholder.

 3 . Fit is the Framework for Integrated Tests, developed by Ward Cunningham [Cun-
ningham01], [Cunningham02]. Fit was incorporated into FitNesse by Bob Martin
[Martin01]. Cucumber can be found in [Chelimsky01].

Wow! eBook <WoweBook.Com>

ptg

Chapter 4 An Introductory Acceptance Test 36

Discount Calculation

Item Total Customer Rating Discount Percentage()

$10.00 Good 0%

$10.01 Good 1%

$50.01 Good 1%

$.01 Excellent 1%

$50.00 Excellent 1%

$50.01 Excellent 5%

Now when the table is used as a test, the Fit/FitNesse framework executes
code that connects to the Discount Calculator. It gives the Discount Calculator
the values in Item Total and Customer Rating. The Discount Calculator returns
the Discount Percentage. The framework compares the returned value to the
value in the table. If it agrees, the column shows up in green. If it does not, it
shows up in red. The colors cannot be seen in this black-and-white book. So
light gray represents green and dark gray represents red. The first time the test
was run, the following table was output.

Discount Calculation

Item Total Customer Rating Discount Percentage()

$10.00 Good 0%

$10.01 Good 1%

$50.01 Good Expected 1% Actual 5%

$.01 Excellent 1%

$50.00 Excellent 1%

$50.01 Excellent 5%

With the results shown in the table, it was apparent there was an error in the
Discount Calculator. Once it was fixed, Betty saw the passing tests as confirma-
tion that the calculation was working as desired.

An Overall Test

If the discount test is applied using one of the last three forms, there still needs
to be a test using the order interface. This ensures that processing an order is
correctly connected to the Discount Calculator. The script for an order would be
run for a couple of instances. But unless there was a large risk factor involved,
the script might just be executed for a few cases, such as the following.

Wow! eBook <WoweBook.Com>

ptg

Summary 37

Discount Calculation

Item Total Customer Rating Discount Percentage? Discount Amount?

$10.01 Good 1% $0.10

$50.01 Excellent 5% $2.50

Testing Process

The acceptance test is the original table that Betty, Tom, and Debbie developed
to clarify the business rule. This acceptance test can be used at four different
levels, as described earlier in this chapter. Because the acceptance test was cus-
tomer supplied, all four levels are considered acceptance tests in this book. The
last two forms are automated by their nature. The second form—an interface to
the Discount Calculator—can be automated. The test for an order could also be
automated with a little more effort. However, you should still check it manually
as well.

Passing the acceptance tests is necessary but insufficient to ensure that the
system meets the customer needs. Other tests, such as those for quality attributes
and usability (described in Chapter 3, “Testing Strategy”), also need to be
passed. See [Meszaros02] for more information.

Summary

• Examples of requirements clarify the requirements.

• The examples can be used as tests for the implementation of the require-
ments.

• Tests for business rules can be executed in at least these four ways:

• Creation through the user interface of a transaction that invokes the
business rule

• Development of a user interface that directly invokes the business rule

• A unit test implemented in a language’s unit testing framework

• An automated test that communicates with the business rule module

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

Chapter 5

The Example Project

“When you are inspired by some great purpose, some extraordinary
project, all your thoughts break their bonds; your mind transcends limita-
tions, your consciousness expands in every direction, and you find yourself
in a new, great and wonderful world.”

Patanjali

The team meets for a chartering session to develop the objectives for Sam’s
idea for a new system. The charter is the first step in the project (see Figure
5.1) and includes the objectives—the tests for the project as a whole. Then the
team holds the initial requirements elicitation workshop that creates high-level
requirements and high-level acceptance criteria.

Charter Scenario TestStoryFeature

F
ocus

Figure 5.1 Projects Start with the Charter

The Charter

Sam rents a conference room for the initial project meeting. He is the sponsor
of the project—in particular, the one who is paying for it. Cathy is the business
customer. Sam’s sister Mary and her husband Harry, who often work in the

39

Wow! eBook <WoweBook.Com>

ptg

Chapter 5 The Example Project444000

store, and Cary, who clerks in the store, are there as potential users. Debbie and
Tom, representing the development and test units, participate as well.

The purpose of the meeting is to create a project charter. A charter can include
many sections, such as vision, mission, scope, deliverables, objectives, and prin-
ciples [Wiegers03] [Wiegers04]. The vision describes the end-state of the result
of the project—why the project should be done. The mission involves the path
that will be taken to get to the vision. The scope documents the boundaries of
the project, including the key events that the project addresses. The deliverables
are the tangible outputs. The objectives are measurable criteria for the success
of the project that are visible by external observation. Principles are statement
of values that a team uses to inform decision making. Other sections can include
stakeholders (those affected by the project), project organization, plans for
implementations, risks, and constraints.

Examples of a charter’s vision, mission, principles, and objectives are shown
in this chapter. Posting these sections of the charter on the project board helps
keep everyone focused. The charter meeting involves more than just Sam and
Cathy so that everyone can get an idea of the big picture, understand the issues
involved, and agree that the project’s objectives are feasible.

Sam starts by presenting his vision for the project. He wants to eliminate
waste in the rental process and offer more services to customers. The discussion
then starts revolving around objectives.

Objectives

Objectives should be SMART. SMART is an acronym that has many interpreta-
tions [Project01]. In the version here, SMART means

• Specifi c—Exactly what is going to be accomplished, or what is the specific
outcome?

• Measurable—Can the outcome be measured?

• Achievable—Can the outcome reasonably be accomplished?

• Relevant—Does the outcome support the vision?

• Time boxed—How long will it take to achieve the objective?

Without detailing who-says-what-when, the sponsor, customer, and users
(Sam, Cathy, Mary, Harry, and Cary) usually propose objectives. If Debbie and
Tom (the developer/tester units) think that an objective is not achievable within
the time box, the objective misses the “A” part of SMART. The measurement
or the time box has to be changed so that the objective is agreed upon, or the

Wow! eBook <WoweBook.Com>

ptg

The Charter 41

objective has to be dropped. The meeting ends with everyone agreeing on the
SMART objectives listed in the following sidebar.

Vision, Mission, Objective, and Principles of a Charter

Vision

• The rental process creates minimum waste and offers more services
to customers.

Mission

• Create a custom software package.

Objectives

• Within two months after project initiation, clerks will spend 50%
less time per transaction on both CD check-outs and returns.

• Within three months after project initiation, customers will be able
to reserve CDs prior to renting them.

Principles

• Customer satisfaction is of primary importance.

• Clerk convenience is secondary.

Project Acceptance Tests

The objectives are the acceptance tests for the overall project. 1 The first objective
requires that the current amount of time it takes to process a CD be measured. 2

In two months, the time will be measured again. If the second measurement is
not 50% less than the first measurement, the test has failed and the objective has
not been met. Did the project still produce business value by reducing the time?
Yes. But it did not deliver the full business value, which is why the project was
approved.

Even if the full effect was achieved, but not within the specified time box
of two months, getting the business value was delayed. This delay reduces the
return on investment (ROI) received from the project.

 1 . Objectives are also related to management tests. See [III01].
 2 . This could be more detailed, giving the exact events that make up the process time,

such as from a customer handing the clerk the CD to the clerk handing the customer
the rental contract.

Wow! eBook <WoweBook.Com>

ptg

Chapter 5 The Example Project42

A Simple Objective

A $200 million project had a simple objective: It was defined by the
following:

• 70mpg

This was the objective for the Honda Insight: a new hybrid vehicle. The
single focus drove the engineering design. When engineers needed to make
a decision, they consulted the objective. Cutting weight is a large factor in
increasing mileage. You might imagine the discussions:

“Seatbelts? Well, they weigh three pounds. Delete them.” There were
implicit constraints. The car had to be sellable at least.

“Air conditioning? It takes 2mpg. Skip it.” The 2 miles per gallon would
count against the mileage if air conditioning was factory installed. So the
dealers had to install it.

The total capacity was 365 pounds. That is the total for two people and
cargo.

The goal was not to sell a lot of cars, but to make the mileage objective.

And they did it.

P.S. Do you know what the charter objectives for your project are?

Objectives Should Be Measurable

A project at one company had the purpose of making its website more user
friendly so that people would stay there longer, thus increasing the pos-
sibility that the people would buy more products and drive revenue. The
company started with an objective that read something like this:

• Within six months, the site should be more user friendly.

The issue with this objective as it stands is that it is practically subjec-
tive. It needs to be stated in measureable terms. The measurement must
be relevant to the goal. There are many ways to perform measurements,
such as the time it takes for a user to perform certain operations. Detailed
measurements can help determine why a particular program is or is not
user friendly. But for purposes of a simple high-level measurement, you
might use a survey, such as the System Usability Scale (a measure of 0 to

Wow! eBook <WoweBook.Com>

ptg

High-Level Requirements 43

You can create a mini-charter for each release of a project. The mini-charter
may include a vision and the objectives for that release. The time boxes for the
objectives usually correspond to the release schedule. If an objective cannot be
met during the release time box, it could be split into subobjectives, each of
which is achievable within the schedule.

High-Level Requirements

A business must have capabilities to run. In Sam’s case, the capabilities include
keeping track of CDs and collecting payment for rentals. The capabilities today
are implemented through manual features—a set of paper index cards and a
cash register. The new system will have features that provide these capabilities.
High-level requirements are usually gathered at the feature level (see Figure 5.2).

Charter Scenario TestStoryFeature

F
ocus

Figure 5.2 After Charter, Elicit High-Level Requirements3

Features

The entire team meets again for a high-level requirements elicitation workshop.
Briefly, here is what goes on. Tom, who has had some facilitation training, man-
ages the brainstorming workshop. 4 It is natural for him to facilitate because

100) [Usability01]. Now the objective can reference a measureable result,
such as this:

• Within six months, the website shall have an increase of 10 points on
the System Usability Scale.

 4 . See [Gottesdiener01], [Gottesdiener02], [Gottesdiener03], [Tabaka01] for more
details.

 3. This was adapted from a diagram by Jim Shore.

Wow! eBook <WoweBook.Com>

ptg

Chapter 5 The Example Project44

he does not have an investment in the outcome. For a few minutes, he has all
the participants individually write down ideas for features, one per index card.
Tom suggests that people not hold back on their thoughts. They should write
down any ideas they can imagine that may pertain to the charter. Out-of-scope
ideas will be eliminated later when the ideas are matched to the objectives of the
charter.

The team members then place their cards on the table and match ideas that
are almost the same. If there are natural groupings, they place the cards close to
each other. The ideas that were grouped together show up beneath the overall
idea. The results are as follows:

Feature List

• Check out and check in

• Reservation system for CDs

• CD catalog of all CDs so renters can select ones to rent or reserve

• For multiple stores, a way to return a CD to any store

• For multiple stores, a way to determine which stores have
particular CDs

• Credit card charging to eliminate cash

• Hookup with a video rental store to offer combined reservations

• Have a party for customers who rent lots of CDs that month

The ideas need to be whittled down. The group came up with ideas related
to Sam’s expansion plans, not the current objectives. The customer unit needs
to decide which features help achieve the objectives and thus should be part of
the scope of the project. After some discussion, the group came up with the fol-
lowing features:

• Reservation system for CDs

• Check out and check in

• Credit card charging to eliminate cash

The remaining ideas are not tossed away. They are captured for revisiting
once the selected features are implemented.

Wow! eBook <WoweBook.Com>

ptg

High-Level Requirements 45

Feature Acceptance Criteria

Now that the features are selected, the entire team examines them to see what
the high-level acceptance criteria are for each of them. As a tester, Tom has valu-
able input into this process. If the team cannot come up with a high-level idea
of how to check that a feature is implemented correctly, the feature needs more
definition. Working together, the team comes up with the following:

Feature Acceptance Criteria

Check out and check-in

• Check out a CD; make sure the details are correct and it’s recorded
as rented.

• Check in a CD; make sure that any late rental fees are computed and
that it’s recorded as returned.

Credit card charging to eliminate cash

• Check out a CD and see if a charge is recorded.

• Check in a CD and see if late rental fees are charged.

Reservation system for CDs

• Reserve a CD and see if a reserver is notified when a CD becomes
available.

Now that the features are agreed upon, the developers and testers determine
a high-level estimate for them to see if they can be implemented to achieve the
objective within the specified time box 5 If not, the project needs review.

The team then plans the sequence and schedule for the features. The means
for doing so depend on the development process. The developer/tester units
could estimate the features and schedule them into iterations. 6 Or the items
could be placed in a work queue and the developer/tester units could work on
the highest item in that queue until it was finished. 7 Estimating, sequencing, and
scheduling are covered in detail in other books, as [Shalloway01] and [Cohn01].

5. Some teams do a high-level business value estimate to determine a high-level ROI for
each feature. This ROI can help in planning.

6. Such as in Scrum [Pichler01].
7. Such as in Kanban [Anderson01].

Wow! eBook <WoweBook.Com>

ptg

Chapter 5 The Example Project46

In this tale, Sam and Cathy agree that the features on the list should be devel-
oped in this order: 8

 8 . If they wanted to, they could determine the business value of each feature as shown
in Appendix C, “Test Framework Examples,” and use the rough return on invest-
ment as a consideration in determining the order of feature development.

1. Check out and check in

2. Credit card charging to eliminate cash

3. Reservation system for CDs

Summary

• A charter includes a project’s vision, mission, objectives, and principles.

• Objectives should be specific, measurable, agreed upon, relevant, and time
boxed.

• Objectives represent acceptance tests for the whole project.

• High-level requirements should support the objectives.

• High-level requirements have high-level acceptance criteria.

Wow! eBook <WoweBook.Com>

ptg

Chapter 6

The User Story Technique

“It is better to take many small steps in the right direction than to make a
great leap forward only to stumble backward.”

Chinese Proverb

The triad (Cathy, Debbie, and Tom) meets to develop stories from a feature.
Debbie explains roles in stories, their attributes, and their personas. She intro-
duces a story card template. Tom shows how acceptance criteria can determine
story size. The Independent, Negotiable, Valuable, Estimable, Small, and Test-
able (INVEST) criteria for stories is listed.

Stories

The features need to be broken down into smaller pieces, the next step shown in
Figure 6.1. It is easier to devise specific acceptance tests for smaller pieces than
for an entire feature. The focus of each story is narrower than the feature. One
or two features are broken down into stories—just enough to fill the team’s time
until the next feature decomposition session.

Charter Scenario TestStoryFeature

F
ocus

Figure 6.1 After High-Level Requirement, Create Stories

47

Wow! eBook <WoweBook.Com>

ptg

Chapter 6 The User Story Technique444888

The team gets together again, this time without Sam. As the sponsor, he has
agreed to and is happy with the features that are going to be implemented. He
will come back as they are developed to see how things are going. Cathy will
lead the effort to develop the stories, getting suggestions from the users (Cary,
Mary, and Harry) along the way. Cathy has the necessary business and domain
knowledge to create the stories. Debbie and Tom can work with Cathy to help
her create the stories and to get a firsthand understanding of what the stories
are all about.

The team is going to break down the first few features into stories. A require-
ment story is a small portion of a feature. Many of the requirement stories are
called user stories because they involve something that a user wants to do with
the system. Sometime a requirement story is just a constraint on the system, such
as using open-source software to avoid license fees or writing the program in
Java because that’s the corporate standard. This type of story is often called a
constraint story. The acceptance criteria for a constraint story are usually speci-
fied by the constraint.

Features into Stories

Debbie starts off, “Let’s break down the features into stories. The features we
are going to start with are”

• Check out and check in CDs.

• Enable credit card charging to eliminate cash.

“Tom and I use a story format that comes from Extreme Programming
[Cohn02]. The form is”

As a < role>, I want to < do something> so that < reason>.

“The <role> represents the user, the <do something> is what the user is try-
ing to accomplish, and the <reason> is why the user is doing it. The <role> and
<do something> are the critical parts. The <reason> is often helpful, but it’s not
required. An example of this form is”

As the clerk, I want to check out a CD for a customer so that I can keep
track of who has rented it.

Wow! eBook <WoweBook.Com>

ptg

Stories 49

Roles

Debbie continues, “Before we start on the user stories, we need to come up
with some roles that are going to be involved in the stories. These roles are not
necessarily specific people, but the ‘hats’ that people wear in the rental process
and are important to uncover. When we gather the details for a story, we want
to ensure that someone who plays that role is available for collaboration. When
we do usability testing or exploratory testing, we take on a role to see how the
system functions from that perspective.”

“We use the same method that we did in coming up with features. Everybody
brainstorms by themselves and writes down potential roles. We then put the
cards on the table, match them up, and group them.”

After thinking, writing, and grouping, Cathy, with the help of the rest of
the team, came up with the following roles. Each role is clarified by listing its
responsibilities.

 1 . There are other roles to consider, such as system administration, operations, and
help desk.

Roles

Clerk—Checks out CD and checks them in

Inventory maintainer—Keeps track of overall CD inventory

Finance manager—Manages all monetary transactions, such as rental pay-
ments and late rental fees

Renter—Pays for CDs with cash or, in the future, with a credit card

Tom notes, “Cathy plays two of these roles: inventory maintainer and finance
manager. The roles are separate because they have different interests and points
of view, even though they are played by one person.” 1

Role Attributes

Debbie continues, “Now that we have the roles, it’s useful to come up with at-
tributes for them. These attributes give a better idea of how to design the system
and how to test it for usability. For each role, you determine”

• Frequency of use— This is how often someone uses the system.

• Domain expertise— This is in the area that the system is designed for.

Wow! eBook <WoweBook.Com>

ptg

Chapter 6 The User Story Technique50

• Computer expertise— This is experience and comfort in using a computer.

• General goals— These are goals you desire, such as convenience and speed.

“Let’s take the role of clerk. Is there anyone else other than Cary who works
as a clerk? What are their backgrounds?,” Debbie asks.

Cathy replies, “Harry and Mary. Cary works there every day and is a com-
puter whiz. His dad Harry is a retired English professor who fills in every now
and then. He gets all his information from the books in the stacks at the library
rather than from the Internet. Mary still works as a French professor. Her com-
puter skills are probably more in line with Harry’s than with Cary’s.”

Debbie goes on, “To avoid giving them names loaded with connotations, let’s
call the two types full-time and part-time clerks.”

Cathy replies, “Based on what I know about the three of them, I think the
attributes look like this.”

Role Attributes

Full-Time Clerk

• Frequency of use— Every day

• Domain expertise— Excellent

• Computer expertise— Excellent

• General goals— Speed (as few keystrokes as possible)

Part-Time Clerk

• Frequency of use— One day a week

• Domain expertise— Understands the general area

• Computer expertise— Low

• General goals— Lots of helpful reminders

Persona

Debbie continues, “We could create a persona for each of these sets of attributes.
A persona is an imaginary person described with lots of details [Cooper01]. It
helps me and Tom to envision an actual user, rather than just a dull set of at-
tributes. It puts a human face on the user. Let’s do one for the part-time clerk.
We’ll use a different name for the persona to keep it less related to a particular
part-time clerk.”

Wow! eBook <WoweBook.Com>

ptg

Stories 51

Here’s what the triad came up with:

Persona

Larry listens to classical music on CDs all the time. He comes in one day a
week to help check in and check out CDs. He prides himself in doing that
without making mistakes. He’s not up to date with all current technology.
He’s not graphically oriented, so icons don’t have much meaning for him.
He wonders if the new system is going to be too complicated and whether
he’ll be able to use it without problems.

Debbie comments, “This persona gives me a good picture to keep in mind
for which I’ll be developing the user interface. Now let’s start on the stories
themselves.”

Stories for Roles

Over the next few hours, Cathy takes the lead in developing the stories from the
features. She winds up with the following on the whiteboard: 2

Stories

• As the clerk, I want to check out a CD for a customer.

• As the clerk, I want to check in a CD for a customer.

• As the inventory maintainer, I want to know where every CD is—in
the store or rented.

• As the finance manager, I want to know how many CDs are turned
in late and what late charges apply.

• As the finance manager, I want to submit a credit card charge every
time a CD is rented so that the store does not have to handle cash.

• As the finance manager, I want to know how much is being charged
every day so that I can check the charges against bank deposits.

2. Some teams create stories for malicious roles. For example, “As a cheapskate renter,
I want to check out a CD without paying for it.” The system needs to prevent this
story from occurring.

Wow! eBook <WoweBook.Com>

ptg

Chapter 6 The User Story Technique52

Story Acceptance Criteria

“As we create each story, we need to list its acceptance criteria. 3 The criteria will
be expanded into specific acceptance tests just before the story is developed.”
The team comes up with the following tests. The titles are a short reference to
the stories listed previously.

 3 . There is a risk that each story is individually correct, but together, they do not fully
deliver the feature. Once the acceptance criteria for individual stories are created, the
acceptance criteria for the feature may be updated. Those criteria can then be turned
into specific acceptance tests. These tests may be harder to specify, but there will be
fewer of them.

Story Acceptance Criteria

Check Out CD

• Check out a CD. Check to see that it is recorded as rented.

Check In CD

• Check in a CD. Check to see that it is recorded as returned.

• Check in a CD that is late. Check to see that it is noted as late.

Report Inventory

• Check out a few CDs. See if the report shows them as rented.

• Check in a few CDs. See if the report shows them as in the store.

Charge Rental

• Check in a CD. See if the rental charge is correct. See if the credit
charge matches the rental charge. See if the charge is made to the
credit card company. Check that the bank account receives money
from the charge.

The team can record these stories using any appropriate technology, from
cards on the wall to entries in a software system. In any case, at this point, the
stories should be short—just a brief description. The details are gathered just
prior to or during the story’s implementation.

Wow! eBook <WoweBook.Com>

ptg

Stories 53

Acceptance Tests Determine Size

“That last story, Charge Rental, seems too big from the acceptance criteria,”
Tom suggested. “There are tests associated with the rental and tests associated
with the credit card company. If we recognize that a story is too big at this point,
we should break it down into smaller stories. Smaller stories are easier to devel-
op and test. If we discover the number of specific acceptance tests is large when
we detail the story, we may want to break it into two stories at that point.”

“The Charge Rental story feels like it could be broken into at least two sto-
ries. One might be Compute Rental Charge and the other Submit Charge. The
tests underneath each of these stories would be”

Story Estimates

Two estimates are often made for every story. These are the business value
and the effort. The business value represents the relative worth of a story
to the business. The effort estimate (often done in story points) includes all
the work required to deliver the story, including implementing the code,
testing it, and any other work involved. One way to estimate business
value and effort is shown in Appendix B, “Estimating Business Value.”
Tracking the cumulative business value of delivered stories gives an idea
of the project’s progress. This keeps the entire team focused on delivering
business value.

If a team uses iteration scheduling, the effort estimate can determine
whether a story can fit into an iteration. If the team uses a work queue,
the estimate indicates whether the items in the work queue are roughly the
same size.

A rough return on investment can be calculated by dividing the business
value by the effort. This can help the customer unit determine whether or
when a particular story should be included in the project.

Compute Rental Charge

• Check in the CD. See if the rental charge is correct. See if the credit
charge matches the rental charge.

Submit Charge

• Submit the charge to the credit card company. Check that the bank
account receives money from the charge.

Wow! eBook <WoweBook.Com>

ptg

Chapter 6 The User Story Technique54

Tom continued, “In this case, Cathy, you may come up with acceptance tests
for both of these stories because they are both business related. These two sto-
ries are related to Charge Rental. If you were estimating the business value [see
Appendix B], these two stories may not have value because you can only submit
a charge when both are complete. Charge Rental has a business value, and we
get business value credit for it when it is complete.” 4

“When we get to the details, Debbie and I may find we need to break up
stories into smaller ones that are technical. These stories are called developer
stories. Debbie and I sometimes create them to cut down the size of the stories.
Also, if we had multiple teams, we could break up one story into several stories
that each team could work on in order to spread the work. It is the responsibil-
ity of the developer unit to create acceptance tests for developer stories” [see
Chapter 16, “Developer Acceptance Tests”].

“Anytime stories are broken up, it’s good to have the triad participate. Ques-
tions may arise in the breakup process that can yield answers which may lead to
more understanding on everyone’s part.”

Customer Terms

Debbie announces, “Now we need to agree on common terminology. It seems
that we are using the term charge in several ways. For example, charge can refer
to both what you charge for a rental and a charge made on a credit card. This
language duplication can be confusing later on. Cathy, we need to state the
terms in business language, not computer language. So we can all agree on the
terms, let’s write a glossary. You’re the lead on this, Cathy” [Evans01].

Cathy replies, “For what we’ve been talking about so far, here are the terms
that Sam and I use.”

4. Some teams credit business value to these smaller stories. It is either a separate esti-
mate or a breakdown of the business value of the higher-level story.

Rental Fee—Amount due for a rental at check out

Late Fee—Amount due if the rental is late when it’s checked in

Card Charge—Amount charged to a customer’s credit card for any reason

“Now that we have the terms, we should use them consistently. So let’s
re-write the stories to use these words,” Debbie said. “We’ll take these two
stories as an example.”

Wow! eBook <WoweBook.Com>

ptg

INVEST Criteria 55

INVEST Criteria

The INVEST criteria for requirement stories was developed by Bill Wake
[Wake02]. Stories should be compared to the criteria of independent, negoti-
able, valuable, estimable, small, and testable.

Independent means that each story can be completed by itself, without
dependencies on other stories. Often a sequence of stories exists, such as the
check-out and check-in stories. Some people term this sequence a saga. Although
there is a relationship between the stories, check-out can be completed by itself,
and later the check-in story can be done. But it could be harder to do the stories
in reverse (check-in first and then check-out.)

Negotiable means that the triad has not made a hard and fast determination
of exactly what is in the story. They will collaborate on that when they start
working on the story.

Valuable means that the story has a business value to the customer. That’s
one reason the customer should put a business value on each story [see Appen-
dix B]. If a story cannot be ascribed a business value, perhaps it should not be
done. Any developer story that is created should relate to some story to which
there is an assigned business value.

Estimable implies that the developer and tester can come up with some sort
of rough estimate as to how long it will take to complete the story. If they lacked
knowledge about the business domain or were implementing the story in some
completely new technology, they might not be able to give an estimate. If the
customer needed a rough estimate to justify spending money on the story, the
developer would spend some time investigating the domain or the technology.

Small stories can be completed in a single iteration or in a reasonable cycle
time. If a story cannot be completed in a single iteration, it’s hard to track
progress, and chances are it is too big a story to comprehend easily. Preferably,
big stories (which some people call epics) are broken into smaller stories, each
of which the customer can understand. Otherwise, the triad may need to break
down the stories into developer stories to facilitate coding. For example, Charge

Compute Rental Fee

Check in the CD. See if the rental fee is correct. Verify that the card
charge matches the rental fee.

Process Card Charge

See if the card charge is made to the credit card company. Check that
the bank account receives money from the card charge.

Wow! eBook <WoweBook.Com>

ptg

Chapter 6 The User Story Technique56

Rental was broken into Compute Rental Fee and Process Card Charge to make
stories meet this criterion.

Testable means that the user can confirm that the story is done. Having
acceptance tests makes a story testable, and passing those tests shows that the
system meets the customer needs. As will be shown later, having acceptance tests
that can be automated ensures that previous stories are not broken when new
stories are implemented.

There may be other reasons to break a story into multiple stories, even if it
meets these criteria. For example, not all the details of a story may need to be
completed to deliver business value. So the details not currently required might
be incorporated into a new story to be delivered later. Any member of the triad
might think that some aspects of a story are riskier than normal. So the member
might create a story to investigate those aspects early on in a project.

The triad spends a few minutes reviewing each story against the INVEST
criteria. Then Debbie finishes, “I think we’re ready to develop more details and
specific acceptance tests for the first story.”

Summary

• Requirement stories can be user stories or constraint stories.

• Every user story has a role and an action and usually a reason.

• Roles are the parts people play in a process, not individuals

• Stories should be written in the customer’s language

• Stories should meet the INVEST criteria—independent, negotiable, valu-
able, estimable, small, and testable

• Each story should have acceptance criteria

• Acceptance criteria can help determine the size of stories.

Wow! eBook <WoweBook.Com>

ptg

Chapter 7

Collaborating on Scenarios

“What we’ve got here is a failure to communicate.”

Captain, Road Prison 36, Cool Hand Luke

Debbie explains to Cathy how to create scenarios with use cases (see Figure 7.1).
The triad constructs a use case for the user story about checking out a CD. Issues
in collaboration are discussed.

Charter Scenario TestStoryFeature

F
ocus

Figure 7.1 Scenarios

Use Cases from User Stories

Debbie explains to Cathy one way to discover the details of a user story. “We
use a common technique called a use case. 1 The use case describes a sequence
of actions and reactions between the user and the software. There are several

57

1. Another way is to use Event/Response, as shown in Chapter 15, “Events, Responses,
and States.”

Wow! eBook <WoweBook.Com>

ptg

Chapter 7 Collaborating on Scenarios555888

formal templates for a use case, but Tom and I prefer a lightweight one. It’s
adapted from Alistair Coburn’s book on use cases [Cockburn02]. Because the
first story we’re working on is Check Out CD, we’ll create a use case for it. We
do not create use cases for other stories until we need them. Otherwise, we could
get stuck in what is called analysis paralysis.”

Check Out CD

As the clerk, I want to check out a CD for a customer so that I can keep
track of who has rented it.

Debbie continues, “Often the use case is part of a workflow that either
involves other use cases or actions that occur outside of the software system.
Let’s track the steps that occur when one of your customers rents a CD with
the manual process. Cathy, can you describe the current flow for checking out
a CD?”

“Sure,” Cathy replies. She writes the steps on a whiteboard. After a few addi-
tions and corrections, the steps look like this:

The customer selects a CD from the cases on the shelves. (The case just has
the cover page).

The customer brings the CD case to the clerk.

The clerk gets the actual CD in another case from a shelf behind the
counter.

The customer presents his driver’s license.

The clerk pulls out the rental card from the CD case.

The clerk writes down the customer’s name and the current date on the
rental card.

The customer signs the rental card.

The clerk files the rental card in a box on the counter and stores the CD
case with the cover page on a back shelf.

Debbie starts, “The software system will not replace all these steps. A big-
ger system, like those red DVD rental kiosks, might, but not the system we’re
replacing. So we only need to concentrate on the steps involved with recording
the rental itself. Based on your current workflow, what do you want the soft-
ware to do?”

Wow! eBook <WoweBook.Com>

ptg

Use Cases from User Stories 59

Cathy replies, “It seems like these are the steps:”

The clerk enters the customer identification and CD identifier into the
system.

The system records the information.

System prints a form that the customer signs

Simple Use Case

Debbie says, “These steps form the main course or the main scenario of a use
case. Some people call this the happy path because it assumes that nothing goes
wrong. The template for a simple use case looks like this:”

Simple Use Case Template

Name—Identifier to easily reference it by

Description—Brief note

Actor—Who initiates the use case

Pre-conditions—What must be true before the use case is initiated

Post-conditions—What is true if the use case successfully executes

Main course—Steps that show the sequence of interactions

“The actor almost always plays the role of the user in the user story. The
name of the use case can be the name of the user story. The brief description
can be the same as the description on the user story. The pre-conditions describe
the required state of the system prior to starting the main course. The post-
conditions are how the state of the system has changed. They describe the results
to check to ensure that the implementation successfully performed the use case.
The pre-conditions represent the setup required to obtain those results. So, based
on the story and the steps, the basic use case looks like this:”

Wow! eBook <WoweBook.Com>

ptg

Chapter 7 Collaborating on Scenarios60

Exceptions and Alternatives

Debbie states, “Now that we’ve identified the main course, we can add addi-
tional information to the use case. During the use case, conditions can occur that
do not allow it to reach its post-conditions. We call these conditions exceptions.
Exceptions can happen in almost any use case. For example, you could have a
power failure or the computer could crash.”

“We could deal with those sorts of exceptions with an overall response
scheme, such as filling out the rental contract manually. Specific exceptions can
occur during the main course. For example, it’s possible that the customer iden-
tification is not recognized when the clerk enters it. Each exception forms a dif-
ferent scenario, which sometimes called an exception scenario. We identify this
exception with an item that is numbered with the step in the main course where
it could occur. We add a letter to denote it as an exception, rather than a main
course step. So this might look like the following:”

Check Out Use Case

Name—Check out the CD.

Description—Check out a CD for a customer.

Actor—Clerk.

Pre-conditions—The customer has an identification. The CD has an
identity.

Post-conditions—The CD is recorded as rented. The rental contract is
printed.

Main Course:

1. The clerk enters the customer identification and CD identifier into
the system.

2. The system records the information.

3. The system prints a contract that the customer signs.

Exceptions:

1a. Customer identification is not recognized.

Wow! eBook <WoweBook.Com>

ptg

Use Cases from User Stories 61

“For many exceptions, the customer needs to determine the response. What
should we have the clerk do?”

Cathy replies, “We could have the clerk enter the customer identification
again. It could be that it was entered wrong.”

Debbie continues, “So we make note of that action with the exception. We
put that beneath the exception, like this:”

Exceptions:

1a. Customer identification is not recognized.
Repeat step 1.

“But suppose that this step is repeated and the customer identification is still
not recognized. It could be that the customer identification is not very readable,
or it could be a fake customer identification. It’s not up to the developer to
determine how to handle this exception. It’s the business’s responsibility. What
should the system do?” Debbie asked.

Cathy replies, “I suppose the clerk could take down additional information
from the customer and rent the CD anyway. We might lose a CD or two because
of fake IDs, but we would avoid making real customers unhappy. I’ll check with
Sam, but for now, let’s do that.”

Debbie says, “Okay, so let’s call these steps Record Customer ID and Check
Out Manually. You can come up with the exact details later. Because it is a
different exception, we give it a different letter. So the two exceptions that can
occur during step 1 are”

Exceptions:

1a. Customer identification is not recognized on first try.
Repeat step 1.

1b. Customer identification is not recognized on second try.
The clerk performs Record Customer ID and Check Out Manually.
Use case exits.

Debbie asks, “Do you have business rules that apply to the rental process?
Our definition of a business rule is something that is true, regardless of the
technology.”

“We do have one that is hard to enforce, given the way we do things now,”
Cathy replies. “Sam and I agreed that a customer should not be able to rent
more than three CDs at any time. The rule limits our losses in case the customer
skips out on us. It also keeps more CDs in stock for other customers.”

Wow! eBook <WoweBook.Com>

ptg

Chapter 7 Collaborating on Scenarios62

Debbie responds, “So you want the check out abandoned in that case. If a
use case is abandoned, the post-conditions are not met. Let’s get that one down.
Later on, you can change your mind, such as increasing the limit for a particu-
larly responsible customer. But that would involve a little more coding.”

Exceptions:

1c. The customer violates the CD Rental Limit business rule.
The clerk notifies the customer of the violation.
The use case is abandoned.

Business Rule:

• CD Rental Limit

A customer can rent only three CDs at any one time.

“Each of these exceptions will be a scenario for which we create tests. One
other facet of use cases is the alternative, which is another scenario. An alterna-
tive is a flow that allows the use case to be successful even if some condition
occurs. For example, the printer might jam when printing the rental contract. In
this case, the clerk could fill out the contract manually, if that’s what you want,
Cathy.”

“I guess that’s about the only thing that could be done. I’ll have to make sure
we still have some of the paper contracts left around.” Cathy replied.

Debbie continues, “So we add an alternative to step 3:”

Alternatives

3a. The printer jams.
The clerk fills out the contract by hand.
The use case exits.

“This use case is fairly straightforward. If there were several alternatives,
we’d make up separate use cases to keep each one simple. We know from experi-
ence with testing that each alternative requires more tests. If the number of tests
for an alternative seemed large, we definitely would split up the use case. If it
took me a while to implement an exception or you could use the system without
the exception being handled, we’d make up separate stories for either an indi-
vidual or a group of exceptions. Those stories would be related to the one for
the main use case.”

Wow! eBook <WoweBook.Com>

ptg

Story Map 63

Acceptance Tests

Debbie continues, “Now that we have the use case for this story, it’s time to
outline the tests to write against it. We need at least one test for the main course,
each exception, and each alternative. Later, we will make up specific examples
for each of these tests. The use case suggests these tests:”

Rent a CD—This is the main course.

One Bad Customer ID—Enter the customer ID wrong once.

Two Bad Customer IDs—Enter the customer ID wrong twice.

CD Rental Limit—A customer has three CDs and rents another one.

Printer Jam—Simulate a printer jam (maybe out of paper).

“As I mentioned before, the pre-conditions convert to the setup for these
tests, and the post-conditions are the expected results. If there is an exception
and the use case is abandoned, we should see something other than the post-
condition, because the use case did not completely execute. Tom will be talking
about the tests more in little bit” [see Chapter 8, “Test Anatomy”].

“If a business rule such as CD Rental Limit is complicated, you would have
tests that exercise just the business rule. The test scenarios for the use case would
exercise two conditions: when the business rule passes and when it fails. If there
was a particular risky aspect to the business rule, we might create more test cases
for the scenario.”

Documentation

“In general, use cases,” Debbie states, “are more than just our joint understand-
ing of how things should work. They also document the computer part of the
workflow. If you create a user’s manual for the clerks, you could just put the
use case into the manual. Or you could rephrase it so that it reads better for a
non-computer savvy person. Each use case captures all the issues for a particular
operation so it is a document that is worth making correct.”

Story Map

Another way to generate scenarios is with a story map [Patton01] [Hussman01].
You can use this technique to break down features into stories. Or, in reverse,
the technique can take tasks that people perform and relate them to each other.

Wow! eBook <WoweBook.Com>

ptg

Chapter 7 Collaborating on Scenarios64

The tasks can be generated with a brainstorming session on high-level require-
ments, as shown in Chapter 5, “The Example Project.” The tasks that are writ-
ten on cards are then collaboratively formed into a map.

On the map, the sequence from left to right shows the time relationship
between activities (groups of related tasks). The columns show tasks related
to the activity. Some are essential tasks (such as the happy path in a use case).
Other tasks can be alternatives, exceptions, or details.

The map can display a workflow, where each activity is a step in that work-
flow, as shown in Figure 7.2. Underneath each step are the stories associated
with that step. To get through the flow, you need to have an implementation of
at least one story associated with each step. You can place the highest priority
story at the top in each column. When you have a tested implementation for
each of these, you then have an implementation for the entire activity you can
test.

Other Stories for One Other Stories for
Another

Other Stories for
Still Another

Workflow

Another ActivityOne Activity

Story for Still Another

Still Another Activity

Story for One Story for Another

Figure 7.2 Story Map Template

The Check Out story, along with the subsequent Check In story, could have
a map, as shown in Figure 7.3.

Wow! eBook <WoweBook.Com>

ptg

Conceptual Flow 65

Check-Out with
Printer Not Working

Check-In CD Check-Out CD

Check-Out with CD
Limit

Time

Rental Workflow

Check-Out CD
Activity

Check-In CD
Activity

Check-Out with Bad
Customer ID

Check-In CD That Is
Not Checked Out

Figure 7.3 Rental Story Map

Conceptual Flow

Cathy, the customer who Tom and Debbie are working with, understands how
the system will work even without seeing a user interface. But if the interface
was unclear, prototype user interfaces and a conceptual flow could be created to
visualize the steps. For example, the conceptual flow for check-out might look
like Figure 7.4.

The user interface prototype is a means for understanding the customer’s
requirements. If the customer needs to see the flow in action, demonstrate it
with as few business rules as possible and no database storage. Use test doubles,
as shown in Chapter 11, “System Boundary,” to simulate any required actions
or data.

Wow! eBook <WoweBook.Com>

ptg

Chapter 7 Collaborating on Scenarios66

Communication

In development, the triad communicates more through face-to-face interactions
than through written documentation. The user stories, use cases, and acceptance
tests are developed interactively. Face-to-face meetings with a whiteboard to
record and display ideas are the most effective form of communication [Cock-
burn02]. If the triad members are separate, having a video meeting with a shared
desktop is an alternative. 2 Let’s take a bird’s-eye view of how Tom, Debbie, and
Cathy interact in these face-to-face meetings.

All three perform active listening [Mindtools01]. In active listening, they lis-
ten to understand. If they understand, they acknowledge their understanding
with an “I follow you” gesture—a nod or a verbal affirmation. They focus on
what the speaker is saying, not what they are going to say next. If they need
clarification, they ask for it, such as “Give me an example.”

When recording ideas on the whiteboard, Tom, Debbie, and Cathy practice
what is termed active writing. Recording on a whiteboard instead of on paper
provides instant feedback. When a person is recording ideas, the speaker waits
until each idea is recorded before proceeding to the next. That keeps the pace
reasonable. If an idea is not recorded clearly, the group can immediately sug-
gest a correction. Ideas are clarified in person and recorded with a common
understanding.

2. You can use video conferencing sites such as ooVoo.com or Skype.com.

Acknowledged

Acknowledged

Submitted

Invalid
ID Dialog

Rental
Denied
Dialog

Rental
Confirmed

Dialog

Invalid
Customer ID

CD Rental
Limit

Exceeded

Check-
Out CD
Dialog

Rental
Limit

Dialog

Figure 7.4 Conceptual Flow

Wow! eBook <WoweBook.Com>

ptg

Communication 67

When documenting ideas, the three recognize that each person may have a
preferred way of receiving information. Some like textual descriptions in either
prose format or outline form. Others would rather view diagrams and charts
than text. If necessary, information is recorded in both formats so that both
preferences can be honored.

When Tom, Debbie, and Cathy are brainstorming or describing ideas, they
realize that each person can have different responses. Some people get their
energy from verbal discussions with other people (extroverts), whereas others
process their ideas internally (introverts) [Wiki05]. So the triad has mechanisms
for allowing both to interact. They have times when people think individually
and write down thoughts as well as times when people discuss thoughts as a
group.

They understand that some people like to see the big picture without getting
into details (intuition), whereas others want to see the details (sensing). So they
have both brief requirements (such as user stories) and detailed requirements
(such as use cases). They recognize that progress usually can be made without
first gathering all the details. But they acknowledge sometimes that work needs
to stop if an important detail is unknown.

They realize that clarity is important, so they develop a common terminology.
The developers and testers accept that the terms and definitions come from the
business customer. The customer understands that the ambiguous terms they
use may have to be renamed to provide clarity.

Communication Is More Than Words

Communication, even when you understand it, can be difficult. We each
have our own preconceived notions as to what is clear and what is correct.
I was working with a colleague on developing a PowerPoint presentation
for a conference. We had gone through the slides together and had a good
working understanding of what we were going to present.

A little before the presentation, I got a printed copy of the slides from him.
They were printed four to a page: two rows and two columns. I looked at
the printout and exclaimed that he had rearranged the slides. He looked at
the printout and said that he had not.

Here’s a question for you: If the first slide is in the upper-left portion of the
page and the fourth slide is in the bottom-right portion, where should the
second and third slides be located?

Wow! eBook <WoweBook.Com>

ptg

Chapter 7 Collaborating on Scenarios68

Summary

• A use case describes the scenarios in a user story.

• A use case states the pre-conditions, post-conditions, and main course or
main scenario.

• A use case may have scenarios with exceptions that do not allow it to
successfully complete.

• A use case may have scenarios with alternative ways to achieve the
post-condition.

• If a use case is large, the exceptions and alternatives may become user
stories.

• Use case scenarios suggest acceptance tests.

• Collaboration requires an understanding of the differences in how people
create and process information.

If you said the second should be upper-right and the third should be lower-
left, then you would have been as surprised as I was. If you said the reverse,
you would have had no issue with the printout.

Communication is about more than just words. It’s about how you organ-
ize those words.

Wow! eBook <WoweBook.Com>

ptg

Chapter 8

Test Anatomy

“Whoever named it necking was a poor judge of anatomy.”
Groucho Marx

Tests for scenarios are now developed (see Figure 8.1). The basic structure of
tests—given, when, then—is explained. Examples are shown in tables and text.

Charter Scenario TestStoryFeature

F
ocus

Figure 8.1 Creating Tests

Triad Creates Tests

All three members of the triad create tests. The customer usually leads with
examples for the basic workflow tests, and the developers and testers come up
with ones from their training and experience. Testers are responsible for en-
suring that there is a set of tests that is as complete as practical. For example,
Tom might envision more tests that can be run for the use case in the previous
chapter:

69

Wow! eBook <WoweBook.Com>

ptg

Chapter 8 Test Anatomy777000

Ideally, the triad should come up with all tests prior to Debbie starting to
implement the story. But sometimes, they may discover a test during imple-
mentation or later. During exploratory testing, Tom or the team may discover
missed conditions or other issues that suggest new tests. If the need to create
tests post-implementation occurs frequently, the team should investigate the
root cause.

Test Context
A system’s operation is defined by its inputs and its outputs, as shown in Figure
8.2. This is a context diagram. What is external to a system is outside the circle.
These externalities define the context in which the system operates. An input or
sequence of inputs should result in a determinable output. For example, if the
clerk inputs a rental for a particular customer and a particular CD, the output
should be a rental contract. If the clerk inputs another rental for the same CD
without its being checked in, he should get an error.

The response of the system is different the second time someone tries to rent
the CD, because the system has stored (that is, made persistent) the rental infor-
mation for the first check-out.

A system can store the rental data internally or externally. If it stores the data
internally, it changes the internal state of the system. If it stores the data exter-
nally, the data is simply another output and input to the system.

For Sam’s system, the data will be treated as internally persistent. Renting a
CD the second time causes a different output because the state of the system is
different. Part of a test involves specifying what the current state of the system is.

Output

Persistent Storage

Input
Output

Input System
External

Persistence

System
Internal

Persistence

Figure 8.2 Context Diagram

Check Out Rented CD—Customer attempts to rent a CD that is already
rented.

CD ID Not Recognized—The system does not recognize the CD ID.

Wow! eBook <WoweBook.Com>

ptg

Test Structure 71

Test Structure

There is a basic flow to a test, shown in Figure 8.3. The test starts with setting
up the state of the system. Then a trigger occurs—an event or action is made to
happen. The test has an expected outcome of that event—a change in the state
of the system or an output from the system. The test compares that expected
outcome to the actual outcome of the system under test. If the two are equal, the
test succeeds; otherwise, it fails. The flow is often shown in text like this:

Given <setup>

When <event or action>

Then <expected outcome>

Setup
(Given)

Initial
System
State

Verify
(Then)

Trigger
(When)

Event or Action Final System
State and

Output

Expected
System State
and Output

Figure 8.3 Test Flow

For simple calculations, like the discount in Chapter 4, “An Introductory
Acceptance Test,” the action is just calling some module to perform a calcula-
tion. So the form could look like this:

Given <inputs>

When <computation occurs>

Then <expected results>

Wow! eBook <WoweBook.Com>

ptg

Chapter 8 Test Anatomy72

The computations looked like this.

Discount Calculation

Item Total Customer Rating Discount Percentage?

$10.00 Good 0%

$10.01 Good 1%

$50.01 Good 1%

$.01 Excellent 1%

$50.00 Excellent 1%

$50.01 Excellent 5%

So a single test case could be as follows:

Given Item Total of $10.00 and a Customer Rating of Good

When computing the discount percentage

Then the output should be 0%

In the discount example, there are six combinations of values for the input.
Each combination (or row in the table) is a test case. For something like a cal-
culation, the group of these test cases can be referred to as a calculation test or
a business rule test.

The flow for the tests for Check Out CD would be something like this:

Given (Setup)

Customer has ID (initial system state)

CD has ID (initial system state)

CD is not currently rented (initial system state)

When (Trigger)

Clerk checks out CD (action)

Then (Verify)

CD recorded as rented (final system state)

Rental contract printed (output)

Wow! eBook <WoweBook.Com>

ptg

Test Structure 73

There can be multiple ways to flow through a use case. Each exception or
alternative in a use case is called a scenario, because there is a different flow.
For each scenario, a different test scenario is needed that has a different setup
or a different action. A test case is a test scenario with the actual data. The term
acceptance test, as used in this book, may refer to a single test case or a group of
test cases for either calculations or scenarios.

Business rule tests are usually not as complicated as test scenarios. The busi-
ness rules often have no initial state setup, and the verification is simply compar-
ing a single result to the expected result.

Because a test scenario is more complicated, you should not duplicate it just
for a different business rule case. Separately testing the business rule can reduce
the number of test scenarios that need to be written.

When writing a test, use the same domain language you use to write up the
stories. The consistency reduces misunderstandings. If you discover during
the test writing that the terms are ambiguous, go back and fix the glossary and
the stories.

To complete a test case, the case needs values that are setup, input, and out-
put. These values can be specified in tables or in text, whichever way the cus-
tomer prefers.

Customers who have experience with spreadsheets may like having the values
in tables because that is more familiar. Tables come in many forms. Three com-
mon ones are the calculation table, the data table, and the action table.

Calculation Table

The table structure used in the previous discount calculation example in Chapter
4 followed this form.

Title

Input Name 1 Input Name 2 Result Name? Notes

Value for input 1 Value for input 2 Expected output Anything that
describes scenario

Another value for
input 1

Another value for
input 2

Another expected
output

This structure is used primarily for calculations. 1 A question mark (?) appears
after names that represent outputs. Following is an example of this table with
only one input and one output.

 1 . The structure is sometimes used for actions, such as recording that a CD is rented,
particularly for lots of test cases for the same action. There is another structure used
specifically for actions, which will be described shortly.

Wow! eBook <WoweBook.Com>

ptg

Chapter 8 Test Anatomy74

CD Rentals

CD ID Rented?

CD2 No

CD3 Yes

The name of the input is CD ID, and the name of the result is Rented. The
value for the input is CD2, and the expected output is No.

Another example of this table is the one that was used for discounts. The two
input names are Item Total and Customer Rating. The result is Discount Per-
centage. The input values are $10.00 and Good, and the expected output is 0%.

Discount Calculation

Item Total Customer Rating Discount Percentage?

$10.00 Good 0%

Data Table

Another table structure declares that information in the system exists (or should
exist). Part of the name of the table can indicate that it is a data table rather than
a calculation table.

Title

Value Name 1 Value Name 2

Value for 1 Value for 2

Another value for 1 Another value for 2

Here’s an example for customer data. This shows that there should be a
customer whose name is James and whose customer ID is 007 and a customer
named Maxwell whose customer ID is 86.

Customer Data

Name ID

James 007

Maxwell 86

The columns represent different fields in a data record, and each row repre-
sents a data record. But the table does not have to correspond to any specific
database table. It can represent any collection of the data items. It is the user’s

Wow! eBook <WoweBook.Com>

ptg

Test Structure 75

view of how the data elements are related, regardless of how they are stored. If
the table is used for the setup part of a test, the data is put into the collection, if
it does not already exist. If the table is used as expected values, the test fails if the
data items do not exist in the collection or have different values.

There is a variation of the data table that shows only rows that meet certain
criteria. The criteria are specified after the name. For example, if you only want
to see customers whose names begin with J, you could have the following.

Customer Data Name Begins with=“’J”

Name ID

James 007

Action Table

The third table structure is an action table. The easiest way to describe the table
is that it works like a dialog box, although it can be used for other purposes. If
a team member needs to visualize a system through a user interface, an action
table can often stand in for a dialog box.

The table starts with a title that represents a procedure or the name of a dia-
log box. The first column has one of three verbs: enter, press, and check. Each
verb has an object that it uses. Enter enters data into an entry field; press initi-
ates a process, such as a Submit button on a dialog box; check sees if a result is
equal to an expected value.

Action Name

Enter Value Name 1 Value for 1

Enter Value Name 2 Value for 2

Press Submit

Check Value Name 3 Expected value for 3

Following is an example for Check Out CD.

Check Out CD

Enter Customer ID 007

Enter CD ID CD2

Press Submit

Check Rented True

Wow! eBook <WoweBook.Com>

ptg

Chapter 8 Test Anatomy76

Some people are horizontally oriented. Others are vertically oriented. The
action table can be represented horizontally. If there is a repeated set of actions,
using the previous layouts requires repeating the value names. So sometimes a
table that looks like a calculation table is used for actions. For example, if a
customer checked out two CDs, it could look like this.

Check Out CD

Customer ID CD ID Rented?

007 CD2 True

007 CD1 True

Tests with Example Values

Tom starts off, “Let’s put some data into the test structure. Cathy, can you give
me an example of a rental?”

Cathy puts up some values on the whiteboard. After the triad discusses them,
they come up with this test:

Check Out CD

Given Customer has ID
and CD has ID
and CD is not currently rented

Customer Data

Name ID

James 007

CD Data

ID Title Rented

CD2 Beatles Greatest Hits No

When a clerk checks out a CD:

Check Out CD

Enter Customer ID 007

Enter CD ID CD2

Press Submit

Wow! eBook <WoweBook.Com>

ptg

Tests with Example Values 77

Tom says, “The rental contract shows the information that will be printed on
the form, but not all the surrounding text. This way, you can be sure that the
correct information is on the contract. Later on, you can decide with Sam how
the rental contract should be worded.”

Requirements Revised

“Now that you can see how the test is structured, does it look like anything is
missing?,” Tom asked.

“Yes,” Cathy replied. “The tables definitely make things more apparent.
Every CD has a rental period. If the customer returns the CD after the end of the
rental period, we charge him a late fee. The rental contract should have the date
of the end of the rental period. We also want the rental fee itself on this contract,
but I think we covered that in another story.”

“Okay,” said Tom. “Let’s revise the tables to include this rental period. Let
me make sure of something. To get the date for the rental period end date, you
add the rental period to the start date. Is that right?”

“Sure,” said Cathy.
“Okay, so let’s make up a quick table to check out both the calculation and

our terminology,” Tom stated. The triad came up with this.

Calculate Rental End

Start Date Rental Period (Days) Rental Due? Notes

1/21/2011 2 1/23/2011

2/28/2012 3 3/2/2012 Leap Year

12/31/2010 4 1/4/2011 New Year

Then the CD is recorded as rented and a rental contract is printed:

CD Data

ID Title Rented Customer ID

CD2 Beatles Greatest Hits Yes 007

Rental Contract

Customer ID Customer Name CD ID CD Title

007 James CD2 Beatles Greatest Hits

Wow! eBook <WoweBook.Com>

ptg

Chapter 8 Test Anatomy78

Cathy says, “It looks like Tom came up with some odd cases. Thinking about
leap years is not something I would normally consider.”

Tom continues, “So you want the rental due date on the rental contract.
I guess we should keep it with the CD as well so we know when it’s due. I
just have a feeling from the bigger picture—the Inventory Report story—that it
would be a good idea. Because that story is coming up soon, it’s okay to con-
sider it now as part of our big picture scope. “

Acceptance Test Revised

Tom continues, “So given that we have that simple calculation correct, what
our tests need to do is set the current date. We do not want to have to change
our test just because the date has changed. I’ll show how we set a date here and
talk about it more when we discuss test doubles [see Chapter 11, “User Story
Breakup”]. So the test could now read:”

Check Out CD

Given Customer has ID

and CD has ID

and CD is not currently rented

Customer Data

Name ID

James 007

CD Data

ID Title Rented Rental Period

CD2 Beatles Greatest Hits No 2

When the clerk checks out the CD:

Test Date

Date

1/21/2011

Wow! eBook <WoweBook.Com>

ptg

Test with Values in Text 79

The example tables have been presented with formatting that distinguishes
between the column headers and the data. The formatting is not mandatory.
When coming up with these on the whiteboard, headers are not bolded. Teams
take pictures of the whiteboard, transcribe the information into tables, and have
the customers review them to make sure no errors crept in.

Test with Values in Text

Some triads use what looks like regular text to specify the tests. So they might
write something that looks like this:

Check Out CD

Enter Customer ID 007

Enter CD ID CD2

Press Submit

Then the CD is recorded as rented and a rental contract is printed:

CD Data

ID Title Rented Customer ID Rental Due

CD2 Beatles Greatest Hits Yes 007 1/23/2011

Rental Contract

Customer ID Customer Name CD ID CD Title
Rental
Due

007 James CD2 Beatles Greatest Hits 1/23/2011

Given

Customer “James” with ID 007
and CD with ID CD2, title “Beatles Greatest Hits,”

a rental period of 2 days,
and is not currently rented:

When

The clerk checks out the CD with ID CD2
to customer with ID 007 on 1/21/2011

Wow! eBook <WoweBook.Com>

ptg

Chapter 8 Test Anatomy80

There is a table form that is halfway between the text and a table [Martin02].
The entry field names and the values are in a single row. An example of this
layout for the When part of the test looks like this.

Check Out CD with ID CD2 to Customer with ID 007 On 1/21/2011

The examples of tests in this book are presented with tables. It is usually
easier to translate a table into narrative text than it is to do the reverse. For busi-
ness rules, such as discount percentage, that have multiple test cases, it is usu-
ally less repetitive to express these cases in a table, rather than in free text. The
names and column headers, which represent the domain language [see Chapter
24, “Context and Domain Language”], are separate from the values. This can
make it easier to check for consistency.

When and Where Tests Are Run

The acceptance test for the Check Out CD test can be on multiple levels. It can
be run as a user acceptance test through the user interface. It can also be tested
though the middle tier by simulating the input from the user interface. 2 Or a
unit test can be written to ensure that the rented value is changed to Yes when
the check out occurs.

Then

CD with ID CD2 is recorded as rented
and rental is contract printed with customer ID 007, customer name

“James,” CD ID CD2, CD title “Beatles Greatest Hits,”
and rental due on 1/23/2011

2. See [Koskela02] for other ways to run acceptance tests.

Wow! eBook <WoweBook.Com>

ptg

Summary 81

Summary

• The structure of a test is

• Given <setup>

• When <action or event>

• Then <expected results>

• For calculation tests, the structure is

• Given <input>

• When <computation occurs>

• Then <expected results>

• Following are three types of tables:

• Calculation—Gives result for particular input

• Data—Gives data that should exist (or be created if necessary)

• Action—Performs some action

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

Chapter 9

Scenario Tests

“I did then what I knew how to do. Now that I know better, I do better.”
Maya Angelou

The triad creates tests for the exceptions in a use case. Tom explains the levels at
which the tests are run. Debbie shows how early implementation can give quick
feedback on meeting the charter’s objectives.

Tests for Exception Scenarios

Cathy starts off, “We’ve finished the test for the main course of the Check Out
CD use case. I suppose we should do tests for the other scenarios, because we’re
focused on that use case. Where should we start?”

Tom replies, “If you had limited time, Debbie and I would create tests for the
exceptions and alternatives and then review them with you. You’ve already told
us how the system should respond to many of the exceptions and given us an
example for the main course. But because you have the time and interest, let’s
create a test for the scenario Check Out Rented CD. The customer attempts to
rent a CD that is already rented. The change is in the setup. What do you want
to see as a result?”

Cathy replies, “I think the clerk should see an error message.”

83

Wow! eBook <WoweBook.Com>

ptg

Chapter 9 Scenario Tests888444

Tom states, “So the test looks like the following:”

CD Already Rented

Given a CD that has already been rented:

CD Data

ID Title Rented Rental Period

CD2 Beatles Greatest Hits Yes 2

Customer Data

Name ID

Maxwell 86

When a customer attempts to rent the CD, an error message is displayed.

Check Out CD

Enter Customer ID 86

Enter CD ID CD2

Press Submit

Check Error Message CD_Already_Rented

Tom continues, “You can see that the customer data is the same. We could
put the Customer Data table into a common location and reference it from the
other tests. There is a trade-off between using a common setup and redoing the
setup for every test. We’ll talk about that later [see Chapter 31, “Test Setup”].
The difference in the setup in this case is that the CD is already rented. The
difference in the result, which we put as the final step in the action, is that an
error is produced. The Check in the last table verifies that the error message is
reported as CD_Already_Rented. This name could be what is output, or it could
represent text that is determined later. No contract is printed out since the error
occurred.”

“Another test scenario is CD Rental Limit. This is when a customer who has
three CDs rented tries to rent another one. We need to setup the situation where
a customer has rented three CDs. Without repeating the Customer Data, the
setup looks like this:”

Wow! eBook <WoweBook.Com>

ptg

Tests for Exception Scenarios 85

“We included one additional aspect in this setup. It’s customer ID = 007. This
table reflects the rentals for which the customer ID is 007 or James. That way,
we do not have to duplicate the 007 in every row for the Customer ID column.
Also, if the CD data in the system has rentals for customers other than 007, this
table only reflects those for 007. Now, you might notice that Rented is Yes for
every row. So we could move that up to the first line.

Given a customer who has rented the CD limit of three:

CD Data Customer ID = 007

ID Title Rented Rental Due

CD2 Beatles Greatest Hits Yes 1/23/2011

CD3 Lucy Michelle Hits Yes 1/24/2011

CD4 Janet Jackson Hits Yes 1/25/2011

CD Limit Reached

Given a customer who has rented the CD limit of three:

CD Data Rented = Yes Customer ID = 007

ID Title Rental Due

CD2 Beatles Greatest Hits 1/23/2011

CD3 Lucy Michelle Hits 1/24/2011

CD4 Janet Jackson Hits 1/25/2011

When James attempts to rent another CD, an error message is displayed.

Checkout CD

Enter Customer ID 007

Enter CD ID CD5

Press Submit

Check Error Message CD_Rental_Limit_Exceeded

“In this case, the error message is different from the previous test. To check
that the CD limit was applied correctly, we should make up a test where two
CDs are currently rented. If this story was critical, I might try more conditions.

Wow! eBook <WoweBook.Com>

ptg

Chapter 9 Scenario Tests86

For example, I could try to rent lots of CDs and make sure that the error occurs
on every attempt after the third CD.”

“The given part of this test could be simplified. In this case, the title of the
CD and the rental due dates are not needed by the test. So it could be shown as
the following:”

CD Data Rented = Yes Customer ID = 007

ID

CD2

CD3

CD4

“This test scenario might be further condensed into a single table, such as
this one:”

CD Limit Reached

Given a customer who has rented a number of CDs, is he allowed to rent
another one?

CD Limit Business Rule

Current Rentals for Customer Allowed?

CD2, CD3 Yes

CD2, CD3, CD4 No

Tom continues, “This is a simple business rule test. You can test it by con-
necting to the module that implements the rule. Then you need to create a test
that ensures the business rule is correctly connected to the check-out process.
That test would look like the uncondensed one.”

A Couple More Scenarios

In a financial application, one customer wanted the tester to add an addi-
tional test scenario. In the application, the net worth of the corporation
was computed every day. The net worth calculation depended on the cur-
rent Federal Reserve inter-bank rate. The developer asked what rate to use
if the inter-bank rate was unavailable due to a server or network issue. The
customer replied that he wanted a way to input the rate manually.

Wow! eBook <WoweBook.Com>

ptg

Tests for Business Rules 87

Tests for Business Rules

Cathy states, “I think I’ve gotten the idea now. Sam and I were thinking of
another business rule. We won’t let a customer rent another CD if he has one
that is late. So, based on your examples, here’s what I think the test should look
like:”

The tester then asked what the rate should be if the Federal Reserve goes
broke and has no rate. The customer answered, “Then I think we’ll have a
few other things to worry about in that case. Without the Federal Reserve,
our net worth would be zero.”

Current Late Rental When Renting

Given a customer who has a rental that has not been returned by the due
date:

Test Date

Date

1/24/2011

CD Data Rented = Yes Customer ID = 007

ID Rental Due

CD2 1/23/2011

When he attempts to rent another CD, notify him that he has a late rental
and he cannot rent the CD.

Check Out CD

Enter Customer ID 007

Enter CD ID CD3

Press Submit

Check Error Message Customer_Has_Late_Rental

Wow! eBook <WoweBook.Com>

ptg

Chapter 9 Scenario Tests88

Cross-Story Issues

Tom notes, “It’s possible that both the CD Limit and the Late Rental conditions
occur at the same time. For example:”

CD Limit Reached and Late Rental

Given a customer who has a rental that has not been returned by the due
date:

Test Date

Date

1/24/2011

and who has reached the CD limit of three:

CD Data Rented = Yes Customer ID = 007

ID Rental Due

CD2 1/23/2011

CD3 1/24/2011

CD4 1/25/2011

When the customer attempts to rent another CD, an error message is
displayed.

Checkout CD

Enter Customer ID 007

Enter CD ID CD5

Press Submit

Check Error Message CD_Rental_Limit_Exceeded

Cathy interrupts, “I can see from the test what the issue is. Should the sys-
tem report Customer_Has_Late_Rental or CD_Rental_Limit_Exceeded? In this
case, even if the customer returns the two CDs that are not late, he cannot rent
a CD. So I’d have the system report as Customer_Has_Late_Rental. When the
customer return the late CD, the CD limit will not be reached.”

Tom resumes, “This is an example of cross-story issues. As best as we try,
some stories have issues with other stories. Many times, we can identify these in
advance. At other times, we may not discover the issues until later.”

Wow! eBook <WoweBook.Com>

ptg

Don’t Automate Everything 89

Disk Monitor
Report Error If Disk
Does Not Respond

Within 1 Second

Power Saver
Spin Down Disk If Not

Accessed in Past Minute

Figure 9.1 Cross-Story Interaction

Don’t Automate Everything

Tom starts off, “Cvathy, we’ve created a couple of exceptions for entering a bad
customer ID.” Debbie could program this into the system. She could track the
number of times a bad customer ID was entered and put up an appropriate error
message. I’d have to write some tests to ensure that was coded correctly.” Cathy
replies, “It seems like this exception could be handled by manual instructions to
the clerk. It could be:”

Unit Tests Are Not Enough

Several companies make highly available disk storage systems. As part of
the system, there is a monitoring module that checks to see if each disk has
problems (see Figure 9.1). One measurement it uses is the response time
for a disk. If a disk does not return requested data in a certain amount
of time, such as 1 second, the monitor reports a failure. Tests are run to
ensure that the monitor operates properly.

A second requirement has been added to make the system green. To
save power, a power saver monitor turns a disk off if it is not accessed for
a certain amount of time. The tests for that requirement also passed.

Testing the individual pieces is insufficient to verify the entire system.
When the new feature was tested in an integrated environment, the disk
monitor signaled failures at random times. The power saver was turning
off disks when they had not been accessed in the recent past. The next time
a powered-down disk was accessed, it sometimes took more than a second
to respond, because it had to be powered up. So the disk monitor reported
an error. When the operator checked the disk, it was perfectly fine.

If the system responds with a bad customer ID, try re-entering the ID. If
you try the ID a second time and it does not work, make a copy of the
customer’s driver’s license and manually fill out a rental contract for the
customer to sign.

Wow! eBook <WoweBook.Com>

ptg

Chapter 9 Scenario Tests90

Tom continues, “Then we just have to write a test for one bad customer ID.”

Bad Customer ID

Given that we have all valid customers in our customer data:

Customer Data

Name ID

James 007

Maxwell 86

When a customer ID is entered that is not valid, inform the clerk.

Check Out CD

Enter Customer ID 99

Enter CD ID CD3

Press Submit

Check Error Message Customer_ID_Invalid

“The cost of implementing and testing for the number of bad entries is prob-
ably not justified by a business value. But that’s your call. Part of our job is not
just to deliver software to you, but to deliver software that delivers business
value.”

Multi-Level Tests

Tom starts off, “The tests we created can be used on multiple levels within the
system. For example, the CD Check Out Test can be applied at the user inter-
face level or the middle tier (see Figure 9.2). If we apply the test at the middle
tier, we check that the functionality works in Debbie’s code. Once we design the
user interface, we test that the user interface is coupled properly to the correct
functionality in the middle tier.”

“As a side note, running the test at the middle-tier level ensures that busi-
ness rules are not coded in the user interface. This makes a clean separation of
responsibilities between the two levels.”

“We may run some tests just against the middle tier, such as Calculate Rental
End [see Chapter 8, “Test Anatomy”]. To clarify the context, I created a dia-
gram (see Figure 9.3). The results of that calculation show up in an output in

Wow! eBook <WoweBook.Com>

ptg

Multi-Level Tests 91

the rental contract. I’ve added an additional screen, CD Data Screen, to allow
viewing of CD data for setup and expected outcomes. We will use this addi-
tional screen just during testing, not in the deployed system. It is not a good idea
to keep test-related functionality in production. It can cause security problems
and other issues.”

CD Check-Out
Test

User Interface

Middle-Tier or
Interior of
Application

Persistence

Figure 9.2 Multi-Level Tests

Check-Out
CD

Screen

CD Data
Screen

Rental
Contract

Set Date
Screen

Calculate Rental End

Interior of
Application,

Rental
Calculator

User Interface

Figure 9.3 Tests for Different Layers

Cathy states, “If this screen shows all the data on a CD, we could use it on
a regular basis. It made me think of a situation where the clerk might want to
know whether a particular CD was rented. Let’s make it into a requirement.
What will it look like?”

Wow! eBook <WoweBook.Com>

ptg

Chapter 9 Scenario Tests92

Tom displays the screen in Figure 9.4.

ID CD2

Title Beatles Greatest Hits

Rented Yes

CD Data

Customer ID 007

Rental Due 1/23/2011

Rental Period 2

OK

Figure 9.4 The CD Screen

“The Calculate Rental End test goes into the heart of the application. You
probably would not use it in regular operations, so we are not going to create
a user interface for it. Just use a test that goes to the middle tier. However, we
do need the ability to set the date for the application, not for the entire compu-
ter. Otherwise, other programs may be affected. So we could either have a Set
Date screen that allows the tester to manually set the date, or we could have an
input at the start of the program (called a command-line parameter) that sets
the date.”

“Another reason that we run Calculate Rental End to the middle tier is that
we can run many test cases on this business rule without the user interface. As
we talked about earlier [see Chapter 4, “An Introductory Acceptance Test”],
tests run directly to the middle tier allow execution of lots of test cases without
getting carpal tunnel syndrome.”

“All the test scenarios from the use case should be run through the user inter-
face. But sometimes the business rules are so numerous that it could take a long
time to create test scenarios. For example, if there were hundreds of discount
levels, creating an order to test every one of them would be onerous. In cases like
that, if Debbie, you, and I agree that there is little risk for a particular aspect of
a story, it makes more sense for us to concentrate our time elsewhere. We will

Wow! eBook <WoweBook.Com>

ptg

Check the Objectives 93

run at least one case for each scenario that causes the user interface to generate
a different display, such as an error message.”

User Interface Tests

Tom starts off, “If you need a more visual representation of how the user in-
terface works, we could work together to create a prototype. We might come
up with something like this display [see Figure 9.5]. We could get preliminary
feedback from you and the clerks. After Debbie implements the first version of
the user interface and tests it against the acceptance tests, you and the clerks can
start using it. The interface may change dramatically based on your comments.
For example, the order and position of the two input fields might change. Or we
might not have a Submit button on the check-out screen. When both fields are
filled in, the rest of the rental process would commence.”

CD ID CD2

Check-Out CD

Customer ID 007

Cancel OK

Figure 9.5 Check-Out Screen

“For each of the error messages that appeared during the Check Out tests
(such as Customer_Has_Late_Rental), Debbie will create an indication on the
display. The message could appear on the entry screen or in a separate dialog
box. The error could create a loud beep or just a quiet ding.” Cary, Mary,
and Harry will tell Debbie what they want. We will talk later [see Chapter 14,
“Separate View from Model”] about ways to capture tests for displays.”

Check the Objectives

Tom continues, “Once we have a user interface for the Check Out CD story, we
can see how the check-out time compares to the objective stated in the project

Wow! eBook <WoweBook.Com>

ptg

Chapter 9 Scenario Tests94

charter. Remember that the measure is to achieve 50% less time [see Chapter
5, “The Example Project”]. We are going to start with the easiest way to imple-
ment the check-out screen. The benefit of this approach is that it requires no
hardware. However, it does take more clerk time and introduces the possibility
of errors, even if appropriate check digits are incorporated in the IDs. If we meet
the objective, we are done.”

“If we come shy of the 50%, we have a system that is faster than before. You
and Sam can decide whether there is a business reason for spending more money
to reach the 50% measure. If there is little financial justification, you may want
to revise the objective.”

“If the measured time is far off, we could investigate ways to cut it down.
We could add a handheld barcode scanner for either or both IDs. A customer
might forget to bring his customer card with a bar code, so we might have to
figure the potential time savings for just scanning the CD. And we need to take
into account unreadable bar codes. If the handheld scanner isn’t fast enough, we
could look at an in-counter scanner.”

“If the bar code scanner doesn’t look like it will be fast enough, well, Deb-
bie has been dying for an opportunity to try out those new radio frequency ID
(RFID) microchips. With an RFID embedded in the CD case and one in the
customer identification card, you could check out the customer as he walked
past the clerk’s desk.”

Debbie’s responds to the mention of RFID, “I’m pretty sure that’s overkill for
this size operation. But when Sam ramps up the marketing for this place after
the software is developed, it might be a thing to try.”

Tom resumes, “If we had a larger system to measure, we might record a log
file that monitors the speed and correctness of entries. The time delay due to
errors or slowness could be converted to dollars based on some conversion ratio.
Unfortunately, the negatives caused by the delay or customer impatience are
harder to measure. When the dollars that are lost due to delay justify the cost of
additional hardware, we can upgrade the system.”

Summary

• Create a test for each exception and alternative in a use case.

• Do not automate everything.

• Run tests at multiple levels.

• Create a working system early to check against objectives.

Wow! eBook <WoweBook.Com>

ptg

Chapter 10

User Story Breakup

“Life affords no higher pleasure than that of surmounting difficulties,
passing from one step of success to another, forming new wishes and see-
ing them gratified.”

Samuel Johnson

The triad meets to discuss another story. Cathy discovers how stories can emerge
from the details. Tom shows some boundary tests.

Acceptance Tests Help Break Up Stories

Cathy begins, “I tried out the Check-Out story on Tom’s computer. Obviously,
you need to add more customers and CDs, but at this point, it looks okay to me.
So what’s next?”

Debbie replies, “I worked with Cary on the user interface screen. Mary and
Larry need to try it to see if it’s usable for them. We could do the Check-In story
next, but it’s along the same lines as Check-Out. To save your time, Tom and I
created some tests, and we’ll review them with you. The Charge Rentals story is
related to Check-In, so let’s do that now. The story is”:

Charge Rentals—As the finance manager, I want to submit a credit card
charge every time a CD is rented so that the store does not have to handle
cash.

Debbie states, “When we initially discussed the story, we thought about
breaking it into two stories with these acceptance criteria.”

95

Wow! eBook <WoweBook.Com>

ptg

Chapter 10 User Story Breakup9696

Acceptance Criteria

Compute Rental Fee

• Check-in the CD. See if the rental charge is correct. See if the credit
charge matches the rental charge.

Submit Charge

• See if a charge is made to the credit card company. Check that the bank
account receives money from the charge.

“I’d keep these as two separate stories, based on the tests. The tests for the
first one relate to computing the correct charge. The tests for the second one
revolve around transactions and interfaces with third parties.

Business Rule Tests

Debbie continues, “Cathy, could you explain the details for the computer rental
fee?”

Cathy answers, “Sure. Sam and I created three categories of CDs: Regular,
Hot Stuff, and Golden Oldie. We have different rental rates for each category.
They are as follows.”

CD Rental Rates
Regular: $2/2 days plus $1/each extra day
Golden Oldie: $1/3 days plus $.50/each extra day
Hot Stuff: $4/1 day plus $6/each extra day

Debbie requests, “To make it clearer, I’d like to put the values for these rates
in a table.” Cathy replies, “Sounds fine to me.”

Debbie asks, “We need some names for the column headers for those values
like $2 and 2 days. What do you call them?”

Cathy replies, “Sam and I just talk about rates. But I can understand that you
need more clarity. So I’ll call the rates Rental Rate, which is the base rate for
the Rental Period Days, and Extra Day Rate, which is for days over the Rental
Period Days.”

Debbie shows the following.

Wow! eBook <WoweBook.Com>

ptg

Business Rule Tests 97

Rental Rates

CD Category Rental Rate Rental Period Days Extra Day Rate

Regular $2 2 $1

Golden Oldie $1 3 $.50

Hot Stuff $4 1 $6

Cathy replies, “This is the way it works now. I know we discussed a late fee
in our original talks. Sam and I agreed we should just make a single charge when
the CD is returned, rather than two separate charges.”

Debbie asks, “Do these rates ever change?”
Cathy answers, “Not too often. But I obviously would like the ability to

change these rates.”
Debbie comments, “Let’s make up another story for that. As you can see,

there are often new stories that emerge when we get to the details. The story
could be this one.”

As the finance manager, I need to modify the rental rates.

Debbie continues, “We’ll get everything done for this current set of rates. I
have the big-picture idea that the rates will change. When I program this story,
I’ll code it so that the effort to add modifiability won’t be a big deal. If it would
take a lot of work to make the code easy to change, I’d code what I needed now
and make the alterations later. When I eventually add modifiability, I’ll know
that my alterations did not affect the original story, because there will be all the
acceptance tests we are going to develop around this story.”

Tom says, “So let’s make up some tests.” He writes the following on the
whiteboard.

Rental Fees

CD Category Rental Days Rental Fee? Notes

Regular 2 $2

Regular 3 $3 1 extra day

Hot Stuff 2 $10 1 extra day

Cathy replies, “That doesn’t seem like enough. You don’t have an example
for Golden Oldie.”

“We can add one,” Tom responds. “We’re going to have a test for the rate
table you proposed. So we’ll have already made sure that the Rental Period Days

Wow! eBook <WoweBook.Com>

ptg

Chapter 10 User Story Breakup98

and so forth are correct for Hot Stuff. The test cases in the table show that we
can compute the Rental Fee correctly for a normal and an extra day rental. If
we had 50 different CD categories, repeating the same calculation for each one
would be redundant. We don’t want to over-test a low-risk situation, such as a
simple calculation. If we had all 50 calculations in this table and you changed
the formula, we’d have to change all 50 results.”

“There could be a reason for adding Golden Oldie. The test case would show
that our calculation worked for cents. So the new row looks like this.”

Rental Fees

CD Category Rental Days Rental Fee? Notes

Golden Oldie 4 $1.50 Shows cents in the rental fee
calculation

Tom continues, “If the values for Rental Rates are fixed, we need a test that
checks that the values are correct in the application. In essence, it would make
sure they matched the values in the Rental Fees table. If values are modifiable,
we need a test to ensure that when you change a value, the new value is stored
correctly.”

“The application can check when you change rates that the new values are in
a reasonable range, such as a Rental Rate greater than $.99 and less than $10.
However, if you entered an incorrect Rental Rate, for example $1 for Hot Stuff
instead of $4, that rate would seem reasonable to the application and it would
be stored. Trying to prevent an input error like that can be difficult and often is
practically impossible.”

“I’d like to ask about some more test cases. I always think about the bound-
ary conditions, so let me see if I’ve interpreted your rule correctly.”

Rental Fees

CD Category Rental Days Rental Fee? Notes

Regular 1 $2 Short rental

Regular 100 $100 Long rental

Regular 0 $2 Really short rental

“Wow!” exclaims Cathy. “You really do have an active mind. I never even
thought about those last two test cases. That one charging someone $100 for a
rental seems right according to your calculations. But that doesn’t seem right for
the business. I think we need to cap the amount of the Rental Fee to the price of
the CD. It will take a little bit of time for Sam and I to get together to determine
how that should work—whether a rental that goes on for a number of days is

Wow! eBook <WoweBook.Com>

ptg

Business Rule Tests 99

automatically terminated and the CD is sold to the customer or whether we give
the renter a call or so forth. I think there may be a couple of new stories:”

As the finance manager, I want to limit the fee for a rental.
As the inventory maintainer, I want to be able to handle a rental that goes
on for a long time.

Cathy continues, “So what do you mean by that test for 0 Rental Days? We
never rent anything for 0 days. We wouldn’t make any money doing that.”

Tom replies, “It’s unclear to me how you determine rental days. Is it a 24-hour
period? What if someone checks out the CD and then immediately returns it?
How long is that?”

Cathy smiles, “You are really being picky. I guess I need to be more precise
so that you can give me exactly what I want. If a rental is returned by 11:59:59
p.m. on a particular day, we count that as being returned on that day. We charge
the Rental Rate for anything that is returned on or before the Rental Due Date.
So it doesn’t matter if a customer returns it on the same day. It’s still charged
the full Rental Rate.”

Tom answers, “I might make up a table that gives examples of what you just
said. But I can’t see ambiguity, like when I worked on an application for one
place where they were using time periods based on minutes.”

Cathy asks, “How did that create a problem?”
Tom answers, “This was a case of where they needed to calculate days, hours,

and minutes. I came up with the following table.”

Calculate Time Period

Start
Date

Start
Time

End
Date

End
Time Days? Hours? Minutes? Notes

1/21/2008 12:01 AM 1/22/2008 2:04 AM 1 2 3

2/28/2008 12:01 AM 3/1/2008 3:05 AM 2 3 4 Leap
year

11/2/2008 1:59 AM 11/2/2008 1:01 AM 0 0 –58 Do you
know
why?

“What’s that last one?” Cathy inquires. “You can’t have an end time that is
before the start time.”

Tom answers, “It’s when daylight savings time ends. There is a small window
between 1 a.m. and 2 a.m. If the start falls within this window and the stop
occurs within one hour of setting the clock back, it’s possible to get negative

Wow! eBook <WoweBook.Com>

ptg

Chapter 10 User Story Breakup100

time. Even if you have a start before this window and a stop after this window,
you get one less hour than exists in reality.”

“Okay, so what did you do?” Cathy asks.
Tom responds, “The customer said he didn’t want us to spend the time figur-

ing out how to handle it. The situation would occur so rarely that it’s not worth
trying to solve it. So we just limited the number of minutes not to be less than
zero.”

Debbie says, “Testers tend to think of edge conditions, like what Tom
showed. Often, these edge conditions relate to decisions that businesses have to
make. So it makes sense to bring up these conditions as part of a requirements
discussion.”

A Story with a Business Rule

Debbie starts off, “Let’s see how the business rule calculations fit into a check-in
scenario. I had a preliminary acceptance test for Check-In. Let’s add the Rental
Fee calculation to it.”

The triad works together to create this test.

Check-In CD

Given that a CD is rented to a customer:

Customer Data

Name ID

James 007

CD Data

ID Title Rented
CD
Category

Customer
ID Rental Due

CD3 Janet Jackson

Number Ones

Yes Regular 007 1/23/2011

When the clerk checks in the CD:

Test Date

Date

1/24/2011

Wow! eBook <WoweBook.Com>

ptg

Summary 101

Check-in CD

Enter CD ID CD3

Press Submit

Then the CD is recorded as not rented, and the correct rental fee is com-
puted.

CD Data

ID Title Rented
CD
Category

Customer
ID

Rental
Due

CD3 Janet Jackson

Number Ones

No Regular

Rental Fee

Customer ID Name Title Returned Rental Fee?

007 James Janet Jackson
Number Ones

1/24/2011 $3

Debbie continues, “We don’t have to run through all the combinations that
we tested in the rental fee computation. One will do. We could do a second one
to ensure that the check-in flow is correctly tied to the rental fee computation
and it wasn’t just luck that we happened to get the right rental free. If Cathy
wanted a different outcome between an on-time check-in and a late check-in,
such as sending an e-mail for every late check-in, we would come up with two
test cases. We should also create test cases for exceptions, such as trying to
check-in a CD that hasn’t been rented or an ID that does not exist in the CD
data. These cases essentially follow the same form as the Check-Out test cases.”

Summary

• Creating acceptance tests can yield additional ideas.

• Break acceptance tests into ones for business rules and ones for scenarios.

• Business rule tests verify all combinations.

• Scenario tests each instance where a business rule produces a different
outcome.

• Determine the edge cases and how the system should respond.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

Chapter 11

System Boundary

“You cannot always control what goes on outside. But you can always
control what goes on inside.”

Wayne Dyer

The triad works on stories that involve interfaces to external systems. Tom
explicates on test doubles and mocks.

External Interfaces

Debbie starts off, “Now that we’ve determined correctly how much to charge
the customer, let’s move on to the Submit Charge story. I see the high-level tests
for this were as follows.”

Submit Charge

• Submit the charge to the credit card company. Check that the bank
account receives money from the charge.

“Cathy, would you explain how charging works,” Debbie asked.
Cathy answers. “I’ve talked with my bank and the credit-card processing

company. The rental system needs to send a charge to the credit-card processor,
like our current charge card reader does. The processor returns a message that
the charge is accepted or declined. At the end of the day, the processor makes
a bank transfer for all the charges during a day less any charge-backs and the
processing fee. Don’t get me started on the size of that processing fee. Anyway,
I can go online and see the transfers that were made during the previous days.

103

Wow! eBook <WoweBook.Com>

ptg

Chapter 11 System Boundary104104

If I need to, I can get a listing of all the charges that were made from the credit-
card processor. I can also confirm with my bank to see that the transfer was
received.”

Debbie draws a diagram (see Figure 11.1). She says, “This is my understand-
ing of what you said. Am I right?”

Charge

CD Rental
System

Credit Card
Processor

Sam’s
Bank

Bank
Statement

Accepted or
Declined

Transfer To

Figure 11.1 Credit-Card Charge Processing

“That looks good to me,” Cathy replies.
Tom states, “Do you have in mind some acceptance tests for this workflow?”
“Yes,” Cathy replies. “It seems like there are two acceptance tests. The first

is to verify that the credit-card processor got all the transactions that the rental
system said it sent. And the second makes sure the bank got all the transfers that
the processor said it sent. So the first one would be this.”

Card Processor Charges Matches Rental Charges

Given a list of credit-card charges that the rental system sent for a day:

Credit-Card Charges from Rental System Day = 1/21/2011

Card Number Customer Name Amount Time

4005550000000019 James $2 10:53 a.m.

4111111111111111 Maxwell $10 10:59 a.m.

When I request a list of charges for the day from the credit-card processor:

Wow! eBook <WoweBook.Com>

ptg

External Interfaces 105

Request Rental Charges from Processor

Enter Date 1/21/2011

Press Submit

Then the charges should match the list from the rental system.

Credit-Card Charges from Processor Day = 1/21/2011

Card Number Customer Name Amount Time

4005550000000019 James $2 10:53 a.m.

4111111111111111 Maxwell $10 10:59 a.m.

Cathy continues, “As finance manager, I’ve gotten this report of credit-card
charges many times, but I’ve only been concerned with the dollar numbers. The
three of us should see if you two need to know about anything else on the report.
For example, there is a column for transaction ID on the report. That might be
useful.”

Tom replies, “That would be great. We could run this test as an acceptance
test for the system. In that case, we would do a manual comparison of the two
lists, and we could incorporate the comparison into part of daily process. If we
did that, Debbie could create a way to compare the information you down-
loaded to the list that the rental system generates. We could create a story to do
that. Have you ever had a problem with a charge not showing up?”

Cathy answers, “There may have been one or two, but it’s never been an issue
that crossed my mind. The effort of calling up the credit-card processor to check
on a $2 charge isn’t really worth it. So I think we can put that story on hold.”

“Oh, I forgot,” Cathy exclaimed. “What about charge-backs? How should
we handle those?”

Debbie replied, “We can give it to you in whatever form is easiest for you to
match up. If the transactions from the credit-card processor are listed separately
as charges and charge-backs, we’ll give you two lists. If they are listed on one
list, say sorted by the time, we’ll give you one list. Our job is to create a system
that makes it easy for you to do your job.”

Tom queries, “Cathy, is there another test you apply to the flow?”
Cathy replies, “There should be one to verify that a transfer was made each

day and that the bank received it. This step follows after the first one. So the test
would be this.”

Wow! eBook <WoweBook.Com>

ptg

Chapter 11 System Boundary106

Cathy continues, “I do this every now and then for a whole set of days. In the
past few years, I’ve never seen a transfer for the amount absent from the bank
statement. There was one time it was off by a day, so there were two transfers on
the same day. I’ll continue to do so for the present. We can put off automating
this process until later.”

Cathy concludes, “This whole idea of charging our customers automatically
instead of handling cash is appealing. Of course, we may lose a few customers
who don’t want to have their rentals appear on their credit-card statements. I
know of one whose spouse would become really angry, to put it mildly, if the
amount of money spent on CD rentals became known. But the savings in the
clerk’s time in collecting money and balancing a cash drawer, my time in tak-
ing deposits to the bank, and the insurance costs of not having money on the
premises will more than make up for any lost rentals. Please get going on Submit
Charge pronto.”

Charges Agree with Transfer

Given the charges processed by the credit-card processor:

Credit-Card Charges from Processor Day = 1/21/2011

Card Number Customer Name Amount Time

4005550000000019 James $2 10:53 a.m.

4111111111111111 Maxwell $10 10:59 a.m.

When the bank statement is checked the next day for transfers made:

Request Transfers from Bank

Enter Day 1/21/2011

Press Submit

Then there should be a transfer for the total of the charges less the process-
ing fee.

Transfers Received by Bank Day = 1/21/2011

From Amount Notes

Credit-Card Processor $10.80 10% fee

Wow! eBook <WoweBook.Com>

ptg

External Interfaces 107

More Details

Debbie says, “I think we’ve got the big picture for this story. Let’s take a look
at more details. From the results of the Check-In story [Chapter 10, “User Story
Breakup”], we have a rentals fee to be charged for a particular day. This fee
becomes the input for the next step: Submit a charge to the credit-card proces-
sor. An additional test for Check-In appears as follows.”

Charge Submitted During Check-In

Given that the customer has a credit-card number and has a CD rented:

Customer Data

Name ID Credit-Card Number

James 007 4005550000000019

CD Data

ID Title Rented
CD
Category Customer ID Rental Due

CD3 Janet Jackson
Number Ones

Yes Regular 007 1/23/2011

When the CD is returned and the rental fee computed:

Test Date

Date

1/23/2011

Check-In CD

Enter CD ID CD3

Press Submit

Rental Fee

Customer
ID Name Title Rental Fee

Return
Day

Return
Time

007 James Janet Jackson
Number Ones

$2 1/23/2011 10:53 a.m.

Wow! eBook <WoweBook.Com>

ptg

Chapter 11 System Boundary108

Then submit a charge to the credit-card processor at that time.

Credit-Card Charge

Card Number Customer Name Amount Date Time

4005550000000019 James $2 1/23/2011 10:53 a.m.

External Interface Tests

Debbie starts off, “So far, we can create the values for a card charge and confirm
that the charge is received by the credit-card processor. However, there is still
one missing piece: having the rental system actually submit the charge. Cathy,
can you go through the possibilities from the business side? How do you submit
a card charge now?”

Cathy replies, “The clerk enters the amount and swipes the card. Either a
card charge is confirmed, or it is declined. Based on how we’ve been expressing
tests, I can see two cases.”

Given a valid credit-card charge:
When the charge is submitted to the credit-card processor.
Then a charge accepted status is received.

Given an invalid credit-card charge:
When the charge is submitted to the credit-card processor.
Then a charge declined status is received.

“With the manual system, if a charge is declined, the clerk asks for another
card. I guess that will be harder to do with this application. I’ll think about what
to do for the second condition and get back to you on that.”

Debbie says, “That’s fine. It’ll take a little time to get the information I need
from the credit processor.”

Component Tests

After a while, the triad meets again. Debbie starts off, “The credit-card proces-
sor has coding standards and protocols on how to submit a charge and what
messages are transmitted between a merchant’s system and a retailer’s system.
Once I understood some of the issues, I determined I needed a component that

Wow! eBook <WoweBook.Com>

ptg

External Interface Tests 109

would handle the charge submission. I created component tests that my code
needed to pass. Using your cases, they are as follows.”

Given a valid credit-card charge:

Card Charge

Customer
Name

Street
Address City State ZIP

Charge
Identifier

CC
Issuer

CC
Number Expires Amount

James 36500
Some-
where
Street

Anchor
Point

AK 99556 Sam CD
Rental
Return
1-23-
2011

Visa 4005550
00000
0019

01/2020 $1.00

When the charge is submitted to the credit-card processor:

• (Contact website and submit properly formatted charge.)

Then the charge is accepted

• and a message is received with this data.

Transaction Receipt

Transaction ID Amount Charge Identification Result

123456789012345 $1 Sam CD Rental Return
1-23-2011

Accepted

“I made up one for charge declined: The input information includes a credit
number that should be declined.”

Invalid Card Response Is Charge Declined

Given a invalid credit-card charge:

Card Charge

Customer
Name

Street
Address City State ZIP

Charge
Identifier

CC
Issuer

CC
Number Expires Amount

James 36500
Some-
where
Street

Anchor
Point

AK 99556 Sam CD
Rental
Return
1-23-
2011

Visa 411111
11111
11111

1/2020 $1.00

Wow! eBook <WoweBook.Com>

ptg

Chapter 11 System Boundary110

“Now how all this information is formatted and transmitted is technical and
detailed. I’ll be using test-driven development with unit tests to design the code
that passes this component test. As you can see, the tests have a lot of detail for
the card charge. The reason I’m showing them to you is they bring up business
questions. A simple one is how do you want to phrase the Charge Identification
that appears on the customer’s statement?”

Cathy replies, “That looks okay to me. What else?”
Debbie continues, “I found that there are a lot of reasons a card can be

rejected. Many of the rejections are for reasons such as the expiration date being
in a bad format. These types of issues I will handle in the component. They are
standard programming concerns. But I’ve come up with some results that call for
a business decision. I may come across a few more when I get into the details.”

Declined Reasons

Card number not on file

Contact the financial institution

Expired credit card

Debbie says, “You need to decide what should be done in each of these cases.”
Cathy works through the options and comes up with the following actions.

Credit-Card Charge Declined Actions

Reasons Action Notes

Card number
not on file

Inform the customer.

Get information for another
card.

Generate a dialog box on
check-in.

Generate an e-mail to Cathy.

When the charge is submitted to the credit-card processor:

• (Contact website and submit a properly formatted charge.)

Then the charge is declined.

• and a message is received with this data.

Transaction Receipt

Transaction ID Amount
Charge
Identification Result Reason

123456789012346 $1 Sam CD Rental
Return 1-23-2011

Declined Card not
on file

continues

Wow! eBook <WoweBook.Com>

ptg

External Interface Tests 111

Credit-Card Charge Declined Actions

Reasons Action Notes

Contact the
financial
institution

Do not inform the customer.

Make person look up at
security camera.

Put up a message to call the
police.

Card may be stolen.

Expired credit
card

Inform the customer.

Get information for another
card.

Generate a dialog box.

Generate an e-mail to Cathy.

Debbie continues, “Tom and I will come up with tests that generate all these
results to make sure the action occurs. Details will need to be gathered on the
wording of the dialog boxes and e-mail messages. But those are display con-
cerns, not business rule issues.”

Tom asks, “Debbie, what happens if the network goes down in the middle
of processing a credit-card transaction? You and I both know that periodically
the Internet seems to come to a grinding halt, which is the equivalent of going
down.”

Debbie replies, “I’ll just queue up the charges and submit them when it does
come back up. I’ll add a component test to make sure that is what happens.”

Tom answers, “What if it doesn’t come up for full day?”
Debbie counters, “I can send them when it does. But the date of the charge

will not match the date of the return. Cathy, will that work for you?”
Cathy replies, “We faced the same problem when the phone line was down.

The clerks had to write down the credit-card numbers and submit them the
next day. We did have one customer who knew the line was down, so he used
an invalid card. But you can only do so much. Submitting them when you can
sounds fine to me.”

Test Doubles and Mocks

Cathy has a burning question. “How are you going to run all these tests? Are
you going to use your credit-card number? How can you make sure that a credit
card is rejected for a particular reason?”

Debbie answers, “One way to do it is to use Tom’s cards. He’s maxed out on
some of them. But the banks might get after Tom for trying to use those credit
cards. So we will use what many developers call a test double [Meszaros01]. A
test double is something that stands in for a real system when tests are being
run. It comes from the idea of a double who stands in for the real actor when
shooting a movie.”

, Continued

Wow! eBook <WoweBook.Com>

ptg

Chapter 11 System Boundary112

“A test double encompasses a couple of other concepts that you might hear
Tom and me or other developers throw around. They are mock [Hillside01],
stub, and fake. [Craig01]. The mock term comes from Alice in Wonderland by
Lewis Carroll. You may remember the line:”

“Once,” said the Mock Turtle at last, with a deep sigh, “I was a real Turtle.”
Debbie continues, “I’m not going to get into the differences and details

between these three terms. That’s something that developers love to discuss on
blogs. The key is that using test doubles makes a system easier to test. The credit-
card processor provides a test double. Instead of connecting to the real credit-
card system, you connect to the test double that’s provided. The test double
accepts credit-card charges and returns confirmations just like the real system.”

“To get the test double to return different results, you send it different com-
binations of values. For example, with your processor, you send a charge for the
credit-card number 4111111111111111. This causes a charge to be declined.”

“If there wasn’t already a test double, I would write one myself. In fact,
whenever there is some external interface to a system, I usually create a test
double. In this case, as long as I can have all the different results sent back to
me, I don’t need my own test double. I haven’t checked, but I’m sure there is
some number I can send that would create a result that puts up a dialog to call
the police. If not, I’ll bet one of Tom’s cards would do that.”

“To test the complete system, we do need to make some credit-card charges
all the way from the return of a CD through seeing it on the credit charges proc-
essed list. We’ll use your card for a good one and use an invalid number to see
if things are rejected.”

What Is Real?

A system in production—“the real world”—interacts with many things outside
itself. It may ask an external service for information or to do a calculation or
perform an action. Events may occur at random times and in random sequences
that require a response from the system. In production, there is usually no con-
trol over these external interactions. But in testing, control is needed so that
the same test case can be performed over and over again and still get the same
expected result.

An external service may provide the same information every time it is
requested. (In programmers’ terms, it is idempotent.) Even so, the developer
may want to create a test double for it so the tests run faster. The context of our
system is shown in Figure 11.2.

Wow! eBook <WoweBook.Com>

ptg

Story Map of Activities 113

Time

System
in

Production

Random
Events

External
Service

Figure 11.2 System Context

You often need control of time to get tests to run the same way. The test dou-
ble that the credit-card processor provides allows for repeatable tests. If there
were random events that the system had to respond to, a test double for them
would be created.

As an example, suppose several clerks were doing check-outs and check-ins
at the same time. The developer could simulate a sequence of check-outs and
check-ins. A test double would generate a series of actions like the following
sequence to see if the implantation could handle it.

Rental Sequence

Operation CD ID Customer ID Date Time

Check-out CD7 99 1/21/2011 11:01:01.001 p.m.

Check-out CD4 99 1/21/2011 11:01:01.002 p.m.

Check-out CD5 007 1/21/2011 11:01:01.003 p.m.

Check-out CD2 86 1/21/2011 11:01:01.004 p.m.

Check-in CD7 1/21/2011 11:01:03.005 p.m.

Check-out CD3 007 1/21/2011 11:01:03.006 p.m.

Check-in CD4 1/21/2011 11:01:03.007 p.m.

Story Map of Activities

As described in Chapter 7, “Collaborating on Scenarios,” a story map can or-
ganize various stories into activities. For the stories so far, the map could look
like the following (see Figure 11.3). As soon as the top story for each activity is

Wow! eBook <WoweBook.Com>

ptg

Chapter 11 System Boundary114

completed, the entire workflow from check-in through seeing the entry in the
card processor’s report can be executed.

Handle
Declined Credit
Cards

Submit Normal
Charge

List Card Charges

Compute Rental
Charge for Multiple
Rates

Check-In
Workflow

Compute
Rental Charge

Check-In CD

Compute Rental
Charge for
Single Rate

Submit
Charge

View Report

Check-In

Figure 11.3 Check-In Story Map

Summary

• Create acceptance tests for external interfaces.

• Developers can create component tests for internal processing
functionality.

• Details from lower levels may generate questions that need customer
answers.

• Use test doubles or mocks for external interfaces to simplify testing.

• Create story maps to organize stories into workflows.

Wow! eBook <WoweBook.Com>

ptg

Chapter 12

Development Review

“May you have the hindsight to know where you have been, the foresight
to know where you are going, and the insight to know when you have
gone too far.”

Anonymous

The triad demonstrates to Sam the current state of the system. Debbie and Tom
recount other stories that have been completed and tests that have been run.

The Rest of the Story

The triad meets with Sam. Cathy begins, “Sam, as sponsor, I’d like to update
you on the current status of the system. I’ve shown you some of the user inter-
faces and tests as we’ve gone along. I’ve worked together with Debbie and Tom
on the acceptance tests for Check-Out, Check-In, and Credit-Card Charging. I
reviewed the other stories and acceptance tests they came up with. I’ll let Debbie
tell you more about them.”

Debbie begins, “Because the system deals with customers and CDs, we needed
a way to add, update, and delete customers and CDs. We had to add custom-
ers and CDs to test check-in and check-out. But we didn’t go into the stories
themselves.”

“Adding, deleting, and updating data is so common that Tom and I know it
needs to be done. We just create stories for those actions and let the customer
schedule them. If the customer has the time, we work through the details with
him. Otherwise, we just review the tests with him.”

“For adding a customer, we checked the business-related decisions with
Cathy. For example, you want to ensure that a customer isn’t accidentally
added twice. So we asked Cathy for a business rule to determine if you have
two customers who are duplicates. She said the rule should look for the same

115

Wow! eBook <WoweBook.Com>

ptg

Chapter 12 Development Review111111666

credit-card number. This duplicate rule is also used when updating a customer.”
“Another action was to a delete a customer. Cathy said not to completely

delete customers, but to deactivate them since they may still have outstanding
rentals. She said she wanted to keep a record of previous customers so it would
be possible to welcome them back or have on file that you don’t want them
back.1 We asked for similar rules for adding, editing, and deleting CDs.”

The acceptance tests Cathy approved were run through both the middle tier
and the user interface. Talking about the user brings up the usability issues that
Tom will talk about.”

Usability Testing

Tom starts, “Debbie described acceptance tests for functionality. There are also
usability tests; quality attribute tests, such as security and performance; and
exploratory tests [Chapter 3, “Testing Strategy”].”

“Debbie and I worked with Cary, Harry, and Mary on the usability of the
check-out and check-in screens. Harry is color blind, so he couldn’t distinguish
that messages displayed in red and green had different meanings. So we added
textual indicators to the messages to clarify whether they meant “This is a prob-
lem” or “This is okay.” Mary doesn’t want to use her glasses to read the screen,
so we increased the size of the font. These examples represent issues that we
often find in usability testing.”

“We talked to a couple of your customers to see if the rental contract was
readable. The wording that your lawyer approved seemed a bit obfuscated.”
Sam interjects, “I think talking about lawyers and obfuscation is redundant.”
Tom replies, “Agreed. And so did the customers. So we worked on a simple
language contract, which is still undergoing review by the lawyer” [ABA01].

Separating State from Display

Tom continues, “We’ll talk more about the concept of separating display from
state later [Chapter 14, “Separate View from Model”], but because we’re talk-
ing about what the user sees, I think it’s appropriate to introduce the idea now.
A while back [Chapter 9, “Scenario Tests”], we presented to Cathy the idea
of separating the form of input from the internal logic. For example, whether
the input is from typing, the scan of a barcode, or the reading of an RFID tag,
the middle-tier tests should not be affected. This separation makes for less test
maintenance.”

 1. A full deletion of a customer would require that all references to a customer (rent-
als, card charge history, and so on) be deleted to maintain what is called referential
integrity [IBM01].

Wow! eBook <WoweBook.Com>

ptg

The Rest of the Story 117

“A similar issue applies to separating a state from the way it is displayed. As
you can see for tests for check-out, we listed the error messages as CD_Rental_
Limit_Exceeded. For example:”

Check-Out CD

Enter Customer ID 007

Enter CD ID CD5

Press Submit

Check Error Message CD_Rental_Limit_Exceeded

Tom resumes, “Debbie coded this test with a reference to an identifier, such
as CD_Rental _Limit_Exceeded. When Cathy decided what should appear on
the screen, we put that into a separate table, as follows.”

Error Message

Identifier Text

CD_Rental_Limit_Exceeded The customer has exceeded the CD rental limit.
Sam has set the limit at 3. Please gently inform the
customer of the limit.

Tom continues, “These two tables allow for separation of testing. One test
verifies that the system produces the right state. The other test confirms that,
given the state, the output is as is desired. It also allows testing the system even
when the final wording has not been approved.”

“Because the contract wording has not yet been agreed upon, the test for the
Rental Contract [Chapter 8, “Test Anatomy”] just verifies that the data on the
contract is correct. Now we have a separate test for the printed contract:”

Given data for a rental contract:

Rental Contract

Customer ID Customer Name CD ID CD Title
Rental
Due

007 James CD2 Beatles Greatest Hits 1/23/2011

Wow! eBook <WoweBook.Com>

ptg

Chapter 12 Development Review118

And this template:

Rental Contract Template

The customer named <Customer Name> with the ID <Customer ID>, hereaf-
ter referred to as the Renter, ha rented the CD identified by <CD ID> with the
title “<CD Title>,” hereafter referred to as the Rented CD, from Sam’s Lawn
Mower Repair and CD Rental Store, hereafter referred to as the Rentee. The
Renter promises to return the Rented CD to the Rentee by <Rental due>. If
said Renter exceeds ... blah...blah...blah.

When the contract is printed, it should appear as this:

Rental Contract Printout

The customer named James with the ID 007, hereafter referred to as the
Renter, has rented the CD identified by CD2 with the title “Beatle’s Great-
est Hits,” hereafter referred to as the Rented CD, from Sam’s Lawn Mower
Repair and CD Rental Store, hereafter referred to as the Rentee. The Renter
promises to return the Rented CD to the Rentee by 1/23/2011. If said Renter
exceeds ... blah...blah...blah.

Debbie injects, “When the lawyer approves the wording, we need to change
this test.”

Quality Attribute Tests

Tom resumes, “I often do extensive performance testing on stories. Just as with
the other acceptance tests, I make up a table for the desired behavior. For exam-
ple, if Sam is expecting to have many checkout people other than Cary, Harry,
and Mary on the system simultaneously, I would make up a table such as what
follows. As the stories are developed, they are checked to see if they meet the
performance measures.”

Check-Out Performance

Number of Simultaneous Check-Outs Response Time Maximum (Seconds)

1 .1

10 .2

100 .3

Tom continues, “Security is an important area for testing. You need to ensure
both physical security of the system and software security. You don’t want a
customer to go behind the counter and check-in a CD that he really isn’t check-
ing in. We have name/password security on the screens, but based on usage

Wow! eBook <WoweBook.Com>

ptg

The Rest of the Story 119

patterns, you may need to change the means and timing for that verification.
You could have a logon at the beginning of the day or before every rental. You
could have software verification, or you could have employee cards.”

“Because you are keeping credit-card information, Debbie discovered that
you need to abide by the PCI Data Security Standard. So we’ll need tests to
ensure that each of the requirements in that standard is met” [Security01].

“Security is such a broad issue that I can’t really get into much more detail
in a limited amount of time. Suffice it to say that I can test a system to see if
there are known security issues, but I can’t test to make sure that it is absolutely
secure. Security is not about letting people do things; it’s about making sure they
can’t do things. It’s easier to test the former than the latter.”

“The entire team can try exploratory testing [Chapter 3] on the system. Each
member takes on the role of a different persona. Each performs the operations
related to that persona and sees how the system feels. Issues may be discovered
that do not come out in our predetermined tests. Because the system is in a run-
nable state and we’ll keep it that way as we add features, exploratory testing can
continue throughout the project.”

Workflow Tests

Debbie starts, “Just because we have tests for each story does not mean that the
system is fully tested. We need to have a test for an entire workflow. The work-
flow can correspond to a story map [see Chapter 11, “System Boundary”] or a
set of story maps. The workflow test verifies that there are no issues between re-
lated stories and that the entire flow is usable. Here’s an example of a workflow
test (see Figure 12.1). If the workflow was really complicated, we might have
multiple workflow tests that go along alternative paths.”

Delay some days

Rental
Contract

Add CD

Add Customer

Check-out CD Check-in CD

Bank
Statement

Card Charge

Test these
against expected

outcomes

Figure 12.1 Workflow Test

Wow! eBook <WoweBook.Com>

ptg

Chapter 12 Development Review120

Debbie resumes, “Because this test involves many facets of the check-in proc-
ess, it can break for a variety of reasons and may have to be maintained fre-
quently. For example, if the wording of the rental contract changed, the rental
rates changed, or other things changed, the test would have to be rewritten or it
would fail. So we only want the essential workflow tests.”

Deployment Plans

Sam speaks up, “Cathy has been keeping me in the loop about your discussions.
So let me ask the bottom-line question: How quickly can you get the system into
operation? Other than the stuff you’ve already outlined, what else do you need
to do?”

Debbie replies, “We already have a way to get customers and CDs into the
system. We don’t have all the data. If we had a spreadsheet with all the data, we
could input it into the system.”

Sam states, “I’ll have Cary, Harry, and Mary start inputting all that informa-
tion. What else?”

Debbie answers, “You’ll need a transition plan to go from the old system to
the new one. You could start with doing rentals both ways for a little while, or
doing all new rentals in the new system, or doing rentals in the new system for
just a few customers.”

Sam says, “Let’s work on that in a little while. Is that it?”
Debbie replies, “Anything else you can think of, Tom?” Tom responds, “I

think that’s it.”
Sam states, “Then let’s go for it. The sooner this starts to happen, the quicker

we can start renting more CDs with the same number of people and thus make
the money to pay you for all your hard work.”

Cathy injects, “I think it’s time to look back at the objectives. The one we’re
dealing with right now is “Within two months, CD check-outs and returns will
be processed in 50% less time.” From what I’ve seen so far, it looks like that
will be met. The manual system measurement was 1 minute, 40 seconds for a
check-out and 55 seconds for a check-in. The preliminary measurements using
the user interface were 46 seconds and 26 seconds, respectively. But as you say,
the sooner we get it working, the sooner we’ll find out.”

From Charter to Deliverable

The triad (Cathy, Debbie, and Tom); Sam the sponsor; and the users Cary,
Harry, and Mary have gone from the initial project charter through the first
deliverable. Along the way, acceptance criteria have been created as objectives

Wow! eBook <WoweBook.Com>

ptg

Summary 121

in the charter through the high-level features and stories. The criteria have been
expressed as specific tests. Cathy now understands the importance of helping to
create acceptance tests. Debbie and Tom have learned about the business do-
main. The more they comprehend the domain, the more effective the triad will
be in producing quality software.

Summary

• It is insufficient to have just acceptance tests that revolve around the func-
tionality of a system.

• Acceptance criteria need to be established for usability, security, perform-
ance, and other quality attributes.

• Workflow tests catch inter-story issues.

• Developing in deployable chunks allows for quicker cost recovery.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

P A R T I I

Details

This part explores the details of acceptance testing and discusses
other ways to create scenarios for testing.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

Chapter 13

Simplification by Separation

“Life is like an onion: You peel it off one layer at a time, and sometimes
you weep.”

Carl Sandburg

The triad discusses a new story from their sponsor, Sam, to let people reserve
CDs online. The story illustrates how separation of issues allows the creation of
simpler tests.

Complex Business Rules

Cathy starts off, “Sam has an idea for a website. The website connects back to
the charter, because we want to give our customers the ability to reserve a CD.
Sam has come up with two ideas. He wants to allow customers to reserve CDs
on the web, and he wants them to be able to search CDs. We haven’t worked
out the details on the second story. But Sam has already decided on the first.”

“He has worked out a pretty elaborate business rule for whether a customer
should be allowed to reserve a CD. He created a table, because he’s been fol-
lowing along with our discussions. The table looks like the one that follows.”

Debbie interrupts, “That table looks complicated, but I’ve seen some business
rules that look like it.”

Cathy replies, “I think Sam can be a little complex sometimes. He wants
the decision for allowing someone to reserve to be based on a number of crite-
ria. The criteria includes the number of times the customer rented in the past
month and the cumulative number of rentals since becoming a customer and the
number of late returns for the past month and beginning rentals. Sam also has a
few people who are his favorites; he wants them to be allowed to reserve unless
they have a really bad rental history.”

125

Wow! eBook <WoweBook.Com>

ptg

 Chapter 13 Simplification by Separation111222666

Allowed to Reserve Business Rule

Monthly Rentals Cumulative Rentals
Sam’s Favorite
Customer

Allowed to
Reserve?

If Rentals Past Month
> 30 and Late Rentals
Past Month <= 1

If Cumulative Rentals >
100 and Late Cumulative
Rentals <= 2

Does Not
Apply

Yes

Does Not Apply Does Not Apply Yes Yes

If Rentals Past Month
> 30 and Late Rentals
Past Month <= 3

If Cumulative Rentals >
300 and Late Cumulative
Rentals < 10

Unknown Yes

If Rentals Past Month
> 20 and Late Rentals
Past Month <= 3

If Cumulative Rentals >
200 and Late Cumulative
Rentals < 5

No No

Does Not Apply Anything Else Does Not Apply No

Simplify by Separating

Cathy asks, “So what do we do with this?”
Tom replies, “With all these comparisons and complex conditions, this is a

hard table to understand. We can break it into smaller tables, if Sam lets us or
you let us, in lieu of Sam being here. As David Parnas states [Parnas01], tables
can clarify the requirements. And smaller tables can add more clarification.”

Cathy responds, “It’s as clear as mud to me. So let’s break it up.”
Tom says, “Let’s start with the Monthly Rentals column. We can separate the

values into separate fields and put the comparisons in single cells. I like to make
up names for the result of each comparison. My suggestion is to call the results
Monthly Rental Levels, or MRLevels to keep it short. If there were meaning-
ful names we could assign to each result, we might name them MRExcellent,
MRGood, and so forth. But in this case, let’s just label them with letters. The
table for Monthly Rental Levels looks like this.”

Monthly Rentals Level Calculation

Rentals in Past Month Late Rentals in Past Month Monthly Rental Level

>30 <= 1 MRLevelA

>30 <= 3 MRLevelB

>20 <= 3 MRLevelC

Cathy says, “I know we’ll need some tests for these Monthly Rental Levels.”
The triad works together and creates the following.

Wow! eBook <WoweBook.Com>

ptg

Complex Business Rules 127

Monthly Rental Level Tests

Rentals in Past Month Late Rentals in Past Month Monthly Rental Level

30 1 MRLevelA

30 2 MRLevelB

31 1 MRLevelA

31 2 MRLevelB

31 3 MRLevelB

32 4 ??

20 3 ??

21 3 MRLevelC

Cathy says, “I’m not sure what the results should be for those two rows with
the ??.”

Tom replies, “By breaking the original table into smaller tables, we can see
whether we have left out anything. Creating some tests for just the Monthly
Rental rule shows that some possibilities have not been covered. Perhaps these
possibilities may never occur during production. But at least we’ve identified
them and Debbie can be sure to make allowance for them in the implementa-
tion. She could at least record that they occurred, put up a dialog box, or do
whatever is appropriate.”

Debbie interjects, “It seems like there should be a MRLevelD as the default
level if none of the conditions are met. That would make it easier to keep track
of those possibilities when they occur.”

Tom resumes, “We can do the same thing for the Cumulative Rentals. To
save time, here’s a quick outline.” 1

Cumulative Rentals Level Rule

Condition Level

If Cumulative Rentals > 100 and Late Cumulative Rentals <= 2 CRLevelA

If Cumulative Rentals > 300 and Late Cumulative Rentals < 10 CRLevelB

If Cumulative Rentals > 200 and Late Cumulative Rentals < 5 CRLevelC

Anything Else CRLevelD

1. Creating the tests for the Cumulative Rentals Level is left as an exercise for the reader.

Wow! eBook <WoweBook.Com>

ptg

 Chapter 13 Simplification by Separation128

The Simplified Rule

Tom continues, “With these individual tables taking care of the details for
Monthly Rentals and Cumulative Rentals, our revised table now looks like this.”

Allowed To Reserve Business Rule (Revised)

Monthly Rentals Level
Cumulative Rentals
Level

Sam’s Favorite
Customer

Allowed to
Reserve?

MRLevelA CRLevelA Does Not Apply Yes

Does Not Apply Does Not Apply Yes Yes

MRLevelB CRLevelB Unknown Yes

MRLevelC CRLevelC No No

Does Not Apply CRLevelD Does Not Apply No

Cathy asks, “Have we covered all the cases? It seems like there are some miss-
ing ones.”

Tom replies, “You’re right. It’s clearer now what all the cases are. There
are several combinations of MRLevels, CRLevels, and Sam’s Favorite Customer
that do not appear in the table. Here are a few.”

Allowed to Reserve Business Rule—Missing Cases

Monthly Rentals Level
Cumulative
Rentals Level

Sam’s Favorite
Customer

Allowed to
Reserve?

MRLevelA CRLevelB No No??

MRLevelA CRLevelB Unknown No?

“We need to ask Sam whether the answer is yes or no in these cases. He could
simply say that the answer is no in all other cases. That would make Debbie’s
life easier, as well as mine. In any event, you and he need to approve these new
tables as being the way to represent the business rule. As you can see, separating
rentals into separate tables decreases the amount of information that needs to be
absorbed for each table and makes the tests cleaner.”

Rental History

To allow reservations based on Sam’s business rule, the system needs to keep
track of the rentals for each customer. The system could keep separate informa-
tion on each rental. At this point, Cathy does not need the history. All she needs
is a count of rentals for the month and the total number of rentals. So for each
customer, there might be the following.”

Wow! eBook <WoweBook.Com>

ptg

Rental History 129

When Tom tests the overall system including the user interface, he’ll look up
both 007 and 86 and see whether the reservation is allowed. 2 There also should
be a test ensuring that the system calculates rental history correctly, such as this.

Reservation Allowed Based on Rental History

Given this rental history:

Customer Data

Customer
ID Name

Rentals
in Past
Month

Late
Rentals in
Past Month

Cumulative
Rentals

Late
Cumulative
Rentals

Sam’s
Favorite

007 James 100 3 300 30 Yes

86 Maxwell 200 1 400 30 No

Determine if a reservation is allowed.

Reservation Allowed

Customer ID Allowed?

007 Yes

86 No

 2. If there was already a system in production with real data, Tom might try to find two
customers: one who is allowed to reserve according to the rule, and one who is not.
This could expose any data-dependent issues.

Compute Rental Counts

Given this rental history:

Rental History Data Customer ID = 86

CD ID Rental Due Rental Returned

CD3 1/21/2011 1/21/2011

CD5 1/23/2011 1/23/2011

CD7 1/23/2011 1/24/2011

CD2 2/11/2011 2/12/2011

CD4 2/13/2011 2/13/2011

CD6 2/13/2011 2/14/2011

CD7 2/14/2011 2/14/2011

Wow! eBook <WoweBook.Com>

ptg

 Chapter 13 Simplification by Separation130

The test does not imply whether a rental history is kept. If it is, the history
could be used for other features that are scheduled to be developed soon. All
that is needed now is to change the numbers whenever a check-in occurs. When
the check-in happens, the number of rentals is incremented by one. If the rental
is late, the number of late rentals is incremented by one. Once a month, the sys-
tem clears out the rental count for the past month. 3

It might be easier to keep a history. The check-in process would add the data
for a rental to the history. The Rental Summary calculation would find all the
rentals for a customer and calculate the counts. In either case, the test is inde-
pendent of the way the calculation is performed.

Summary

• Simplify business rules by separating them in component parts.

• Create tests for the component parts.

• Use the simpler components to determine missing logic.

And a day in the next month:

Test
Date

Date

3/1/2011

The monthly and cumulative rental counts should be as follows.

Rental Summary

Customer
ID Name

Rentals
in Past
Month?

Late
Rentals in
Past Month?

Cumulative
Rentals?

Late
Cumulative
Rentals?

86 Maxwell 4 2 7 3

 3. Alternatively, the system could increment the Late Rentals count when a CD was not
returned by the Rental Due date. This would be a time-base event, as described in
Chapter 15, “Events, Responses, and States.”

Wow! eBook <WoweBook.Com>

ptg

Chapter 14

Separate View from Model

“To each his own. (Suum Cuique)”
Cicero

Tests can be made more maintainable by separating what appears to the user
from the logic in the underlying business model.

Decouple the User Interface

For the CD Reservation story in the previous chapter, the business rule (the
model) for determining whether a customer is allowed to reserve CDs was docu-
mented, and tests were written for it. This reservation tests go to some module
inside the system, as shown in Figure 14.1. The triad did not talk about how the
reservation-allowed condition is displayed (the view), and they did not make up
tests for the user interface.

Reservation
Allowed
Module

Reservation Test

User
Interface

Test

Figure 14.1 User Interface and Logic Tests

131

Wow! eBook <WoweBook.Com>

ptg

Chapter 14 Separate View from Model111333222

There are at least three ways that the application could show how a customer
was not allowed to reserve a CD:

• The application could hide the Reserve option.

• It could disable the Reserve option.

• It could have the Reserve option go to a dialog box that informs the cus-
tomer that he is not allowed to reserve.

Here are the three ways displayed in tables.

Display for Reservation Allowed

Allowed Reserve Button Displayed?

Yes Yes

No No

Or

Display for Reservation Allowed

Allowed Reserve Button Enabled?

Yes Yes

No No

Or

Display for Reservation Allowed

Allowed Reserve Button Goes To?

Yes Make Reservation dialog box

No Sorry No Reservation dialog box

Each variation can be described with a specific test, as shown here.

Display for Reserve Allowed or Disallowed

Given that these customers are either allowed or disallowed to reserve:

Reservation Allowed

Customer ID Allowed Name

007 Yes James

86 No Maxwell

Wow! eBook <WoweBook.Com>

ptg

Decouple the User Interface 133

Display the Reserve button if the customer is allowed to reserve (see
Figure 14.2).

Customer

Customer

Cancel

Maxwell

Customer

Customer

Cancel

Reserve

James

Figure 14.2 Reserve Button Displayed or Not Displayed

Or

Enable the Reserve button if the customer is allowed to reserve (see
Figure 14.3).

Wow! eBook <WoweBook.Com>

ptg

Chapter 14 Separate View from Model134

Customer

Customer

Cancel

Reserve

Maxwell

Customer

Customer

Cancel

Reserve

James

Figure 14.3 Reserve Button Enabled or Disabled

Or

Display the Customer Allowed to Reserve option and put up a different dia-
log box. If the customer is not allowed to reserve, display a No Reserve
dialog box. If the customer is allowed to reserve, display a Reservation
dialog box (see Figure 14.4).

Wow! eBook <WoweBook.Com>

ptg

Decouple the User Interface 135

Customer

Customer

Cancel

Reserve

Maxwell

Customer

Sorry, Maxwell, you cannot reserve CDs.

OK

Customer

Customer

Cancel

Reserve

James

Customer

James, what CD would you like to reserve?

CD Title

Cancel

Reserve

Beatles Greatest Hits

Figure 14.4 Different Dialog Boxes

Wow! eBook <WoweBook.Com>

ptg

Chapter 14 Separate View from Model136

Decoupling Simplifies Testing

When Sam and Cathy change their minds about how the ability to reserve
should be displayed, all Debbie and Tom have to do is change the test to one of
these. These tests do not have to be automatic. Tom can manually run this test.
If there gets to be too many of these manual tests, Tom could use a user inter-
face test automation tool. The tool could be used when the application is being
built to automatically verify the user interface, as shown in Chapter 3, “Testing
Strategy.”

If the business logic had not been separated from the display logic, the test for
the button Enabled/Disabled option might be as follows.

Show Reserve Button

Monthly Rentals
Cumulative
Rentals

Sam’s Favorite
Customer

Show Allowed
to Reserve?

MRLevelA CRLevelA Does Not Apply Reserve Button
Enabled

Does Not Apply Does Not Apply Yes Reserve Button
Enabled

MRLevelB CRLevelB Unknown Reserve Button
Enabled

MRLevelC CRLevelC No Reserve Button
Enabled

Does Not Apply CRLevelD Does Not Apply Reserve Button
Disabled

Whenever a change is made in how to display the allowable reservation, this
bigger table has to be changed. Mistakes might be made at some point. This
separation of state from display translates both into easier to test and simpler
code. From a testing standpoint, Tom just has to confirm that the user interface
displays the correct result in two cases—for 007 and 86. With this table, he has
to see that the user interface displays the correct result in five cases—one for
each row in the table.

Summary

• Decouple the user interface from the business logic (separate view from
model) to simplify testing.

Wow! eBook <WoweBook.Com>

ptg

Chapter 15

Events, Responses, and States

“I just dropped in to see what condition my condition is in.”

Mickey Newbury, “Just Dropped In”

This chapter explains the event-response way of capturing requirements and
testing the state transitions caused by events.

Events and an Event Table

The CD rental process is driven mostly by user actions. So employing use cases
was a natural fit for eliciting requirements. There are other ways to discover
requirements. A popular technique is the event table. It defines events that occur
and determines how the system should respond. An event could be something
that a user initiated or something that a piece of hardware signaled. It could also
be a particular time, such as the first of the month, or a time interval, such as
every hour. The response of the system could be a visible output or a change in
the internal state.

The triad brainstorms to come up with events to see if any issues have been
missed. They come up with the following:

Events for CD Rental

Event Notes

Customer rents CD Human initiated

Customer returns CD Human initiated

First of the month Specific time

Base rental period ends Period of time

Bank statement arrives External event

137

continues

Wow! eBook <WoweBook.Com>

ptg

Chapter 15 Events, Responses, and States111333888

Events for CD Rental

Event Notes

Customer enters store Human initiated

Chicken Little announces the sky is falling External event

Customer reports CD is lost Human initiated

Inventory Maintainer cannot find CD External event

Counter Clerk drops CD, and it breaks External event

Counter Clerk sees CD is dirty External event

The triad now needs to come up with how the system should respond to all
these events. Cathy decides on the business response to events. Other events
may trigger internal actions. After a certain period, the triad winds up with the
following:

Events and Responses for CD Rental

Event Response Notes

Customer rents CD Record CD as rented

Print rental contract

Human initiated

Customer returns CD Record CD as returned

Charge for rental

Human initiated

First of the month Print inventory report Specific time

Rental period ends Notify customer of end of
rental

Period of time

Bank statement arrives Nothing External event

Customer enters store Nothing Human initiated

Chicken Little announces the
sky is falling

Nothing External event

Customer reports CD is lost Record as lost

Charge for CD

Human initiated

Inventory Maintainer cannot
find CD

Record as lost External event

Counter Clerk drops CD, and
it breaks

Record as broken External event

Counter Clerk sees CD is dirty Set aside to clean External event

Anything that does not require a response from the system is out of scope.
For example, the bank statement arriving does not have a response from the sys-
tem, although Cathy will have a response. Many of the human-initiated events

, Continued

Wow! eBook <WoweBook.Com>

ptg

States and State Transitions 139

are turned into use cases. Some of the external events, such as dropping a CD,
are also turned into a simple story. Making up a use case might be overkill,
because there are not many details associated with them.

A test should be created for every one of the events, even the simple ones. The
tests clarify exactly what the system response should be. For example, dropping
a CD might have a test something like this:

Dropping a CD

Given a CD in the inventory:

CD

ID Status Rented

CD5 Okay No

When it is broken by the Counter Clerk or Inventory Maintainer, record
the event:

Record Broken CD

Enter CD ID CD5

Press Submit

Then the CD status should change:

CD

ID Status Rented

CD5 Broken No

The number of tests might suggest a different approach for the conditions.
For example, all losses could be grouped into a small number of categories,
such as things that are irreversible, such as a broken CD, and things that
are possibly reversible, such as a dirty CD or a missing one. (A missing one
might be found sometime.)

States and State Transitions

Entities such as CDs take on different states or conditions. The CD transitions
from one state to another due to an event, such as the ones shown in the event-
response table. Documenting the states and the transitions is a collaborative

Wow! eBook <WoweBook.Com>

ptg

Chapter 15 Events, Responses, and States140

effort, just as for the event-response table. The outcome of the effort is a list of
the states and a map of the transitions.

Based on the events, more discussion, and some simplification, the triad
agrees on the following states:

CD States

State Meaning

Ready to Rent In inventory, ready for renting

Rented Customer has it on rental

Irreversible Loss For example, broken or badly scratched

Reversible Issue For example, dirty, cracked case

Missing Not rented, but not found in inventory

Lost Customer reports CD is lost

The transitions can be documented in two ways. The first is a state diagram.
In Figure 15.1, the states are shown in circles, and transitions are shown as lines
with labels. Each state may have associated data. For example, the rented state
can have the date the CD was rented and the customer it was rented to. The
large black circle on the left is called the initial state. It points to which state is
the first one. The small black circle on the right is the final terminal state. There
are no transitions from the final state.

Inventory
maintainer
cannot find

CD.

Ready to
Rent

Irreversible
Loss

Reversible issue

Rented

Missing

Customer
returns CD.

Clerk sees
CD is dirty.

LostCustomer
rents CD.

Customer
reports CD

is lost.

Clerk drops
CD and it
breaks.

Figure 15.1 State Diagram

Alternatively, the states and events can be specified in a table. Initially this
may display the same information as parts of the event/response table, such as
these:

Wow! eBook <WoweBook.Com>

ptg

States and State Transitions 141

CD States and Events

States/Events Customer
Rents
CD

Customer
Returns
CD

Inventory
Maintainer
Cannot
Find CD

Counter
Clerk
Drops
CD, and It
Breaks

Customer
Reports
CD Is
Lost

Counter
Clerk Sees
CD Is
Dirty

Ready to Rent Rented Missing Irrevers-
ible Loss

Reversible
Issue

Rented Ready to
Rent

Lost

Irreversible Loss

Reversible Issue

Missing

Lost

The state diagram does not show an event that causes an Irreversible Loss
for the terminal state. No events are shown that cause the CD to transition out
of states such as Missing or Reversible Issue. After some discussion, the triad
comes with these additional events. The entire table is not repeated, because it
would exceed the width of the page.

CD States and Events

States/Events Customer
Reports CD
Is Found

CD Prepared
for Rental
(Cleaned)

Monthly
Inventory Report
Created

CD Is
Found by
Clerk

Irreversible Loss Remove CD from
system

Terminal

Reversible Issue Ready to Rent

Missing Ready to
Rent

Lost Rented

With the state-event table, blank cells are easily identified. A blank cell repre-
sents that an event should not occur for a particular state or, if it does, it should
not cause the state to change. Examine all blank cells to ensure that all the bases
are covered—that is, all possible state transitions due to events are identified. A
blank cell can be filled in once it’s examined with some indicator, such as N/A
for not applicable to show that the state/event combination has been considered
and that the event should cause no response when the CD is in that state.

Wow! eBook <WoweBook.Com>

ptg

Chapter 15 Events, Responses, and States142

The primary purpose of the state table is to show transitions. Other responses
and state data such as the date rented can be put into this state table. For exam-
ple, the action of Remove CD from System is shown in the state/event combina-
tion of Irreversible Loss/Monthly Inventory Report Created.

There should be a test for every state transition. Some of the transitions are
already covered by other tests. The ones for check-out and check-in already
cover the transitions between Ready to Rent and Rented. Other transitions may
show additional user stories that need to be implemented, such as a Prepare CD
for Rental. The tests for these stories would show the transition from Reversible
Issue to Ready to Rent.

Internal State or External Response

Here is another example of event, state, and response. Every external event caus-
es a system to produce an externally visible response, change its internal state
(such as persistent data), or both. An internal state change alters an externally
visible response in the future. For example, suppose the system keeps the ad-
dresses of customers. The address of a customer can be changed, as shown in
Figure 15.2.

Internal
Persistence
of Address

(State)

Send MailChange Address

Figure 15.2 Internal State

Event/Response

Event Address changed

Response Address change confirmation

Internal State Change Address updated

Wow! eBook <WoweBook.Com>

ptg

Internal State or External Response 143

In the future, when the system sends mail, the new address will be used:

Event/Response

Event Send mail

Response Send to current address of customer

An acceptance test for an internal state change could confirm that the state
has been changed. Or it could be combined with another test that shows the
result of that changed state. So the Change Address—Send Mail test would flow
together.

Alternatively, if the address is kept in a repository that is external to the sys-
tem (see Figure 15.3), the update is part of the response.

Send MailChange Address

External
Repository
for AddressOutput Is

Response to
Change Address

Input for
Send Mail

Figure 15.3 External State

Event/Response

Event Address changed

Response Address change confirmation

Output New address output to external repository

Internal State Change None

In this case, an output is expected. The acceptance test can verify this output
to another system, just as was done with the credit charge in Chapter 11, “Sys-
tem Boundary.” In creating a response to an event, a system may use data that
comes from the external world. That data may affect the response. In this case,
the input data in the repository changes the response. For testing, developers
may create a test double to simulate the input data from the external repository.
With the external data, the response to send mail is as follows:

Wow! eBook <WoweBook.Com>

ptg

Chapter 15 Events, Responses, and States144

Event/Response

Event Send mail

Response Input address from external repository

Send mail to that address

Transient or Persistent States

A state change may be transient or persistent. A transient state change exists
for a short period. For example, an address could be changed just for a single
order or for all the orders made during a web session. A persistent change would
change the address permanently, or at least until it was changed again.

A Zen Question

If the internal state changes, but it never affects anything directly or indirectly
seen in the outside world, is that state change necessary? Does a tree make a
sound when it falls with no one around?

Summary

• Event/response tables are a complementary way of eliciting requirements.

• Every event/response combination should be covered by an acceptance
test.

• A state table documents the events that cause the state of an entity to
change.

• Every state/event combination should be covered by an acceptance test.

• State tables and event/response tables may show the same information, but
they are organized with a different emphasis.

Wow! eBook <WoweBook.Com>

ptg

Chapter 16

Developer Acceptance Tests

“What is good for the goose is good for the gander.”
Anonymous

The triad has developed acceptance tests for stories that Cathy created. When a
developer needs a component from another developer, the requester should cre-
ate acceptance tests for that component.

Component Acceptance Tests

Acceptance tests are not generated by just the customer unit. Many software
development organizations have groups that develop common modules or com-
ponents for other groups. The requesting group needs to supply acceptance tests
for those modules.

Field Display Tests

For example, specialized developers often create custom user interface compo-
nents. User interface developers use these components in web pages. Let’s look
at a couple of common components. One is a text box that accepts a format-
ted string, such as a phone number or an e-mail address. The other is a tabular
style–component that allows sorting by the values in columns. The tests may
look like specifications or vice versa.

Cathy wants a field on the display for entering a phone number. Obviously,
you should check the data entered into the field for validity. The format differs
between nations; so to keep it simple, the example shows a U.S. phone number.
The N in the table means a number or a digit.

145

Wow! eBook <WoweBook.Com>

ptg

Chapter 16 Developer Acceptance Tests111444666

Formatted Field

Field Type Example Format Validation

U.S. phone number 1-919-555-1212 1-NNN-NNN-NNNN Area code must
be valid

Here are some of the tests Debbie might create for a U.S. phone number field. 1

U.S. Phone Number Component Tests

Value Valid? Notes

1-919-555-1212 Y

1-000-555-1212 N Bad_area_code

Suppose Don is the developer who is going to create this component. The first
thing Debbie needs to do is give an acceptance test for what it should look like.
For example, will it display the dashes immediately or as a person types the dig-
its? Let’s suppose the former. Debbie creates an image of what the component
should look like in Figure 16.1. The image is part of the acceptance test, but one
you have to verify manually. You also need to check the color and font. 2

Phone Number 1-999-999-9999

Figure 16.1 State Diagram

Debbie also needs to specify to Don what should occur if the phone number
is incorrectly formatted. Should the component just return a failure code? Or
should the component produce an output as a beep or error message? Since the
phone number box will be used repeatedly on every form that requires one, this
decision may need to be made by a corporate user interface standards group.
Suppose Cathy wants the error to be displayed when the user finishes an entry
in the field. So Debbie constructs a table that describes how the error should
appear.

2. A test process could include a step in which the customer approves the image that
an application generates. That image could be used in a test to ensure that it did not
change.

1. Creating additional tests for phone numbers is left as an exercise for the reader.

Wow! eBook <WoweBook.Com>

ptg

Component Acceptance Tests 147

U.S. Phone Number Errors

Error Display Message? Notes

Bad_area_code “You entered an invalid
area code”

All errors should be displayed to the
right of the entry field on leaving
the field

Debbie needs to show Don what component should be output when the value
is submitted. This table shows that the dashes should be included in the output
value. Another possibility is that the dashes should be eliminated.

U.S. Phone Number Output

Field ID Field Entry Output?

“HomePhone” 1-919-555-1212 “HomePhone=1-919-555-1212”

Don creates a form with a Phone Number field on it and a Submit button. He
then demonstrates to Debbie that the component passes the tests for both a valid
and an invalid entry. Next, he shows that the field sends the correct informa-
tion when the Submit button is pressed. He also devises a form with three entry
fields—one prior to the Phone Number field and one after it—and a Submit but-
ton. He demonstrates that the field works with other entry fields by allowing the
user to tab to the next and previous entries.

This component is a user interface component, so there will be some manual
tests to ensure that it is acceptable to a human being. You can create automated
tests to check that the component continues to work even if you change its
underlying implementation.

Tabular Display Tests

Here’s a display component that is more complicated. A user interface often
contains a table of items. The table component might allow the user to sort the
table by the values in each column, or it may have links within the table. Cathy
or Debbie needs to determine what should be displayed if there are no values in
the data to be shown in the table and what to do if the number of values is large.

Here are some potential inputs to a table display. It doesn’t matter whether
these values come from a program component, such as a Java class, or a data-
base query. That’s a matter of connecting up the table to the appropriate code.
The first input is a simple set of data.

Wow! eBook <WoweBook.Com>

ptg

Chapter 16 Developer Acceptance Tests148

Table Data

Name Date Amount

James 2/21/2011 $5.00

Maxwell 1/23/2011 $.01

Agent 12/12/2011 $10.00

Debbie needs to show Don how this data should appear on the screen. Sup-
pose that Cathy wants to have shaded column heads and shading on every other
row (see Figure 16.2). The output specification is concerned only with appear-
ance, not how the display is generated. 3

Name

James

Date Amount

2/21/2011

1/23/2011

12/12/2011

$5.00

$.01

$10.00

Maxwell

Agent

Figure 16.2 Table Display

Debbie and Don need to clarify the contract for the table display component.
Should it be Debbie’s job to ensure that the component never gets passed an
empty table or a really big table, or should it be the component’s responsibility
to handle these cases? If the latter, Debbie needs to create some tests for these
two conditions.

 3. It could be generated by Hypertext Markup Language (HTML) attributes, Cascad-
ing Style Sheets (CSS) styles, or some other set of acronyms. However, a constraint
might be that it uses the same framework as the rest of the system.

Empty Table Display

Given the following data:

Table Data

Name Date Amount

The following should appear on the screen (see Figure 16.3).

Wow! eBook <WoweBook.Com>

ptg

Component Acceptance Tests 149

Date Amount Name

No matching
records

Figure 16.3 Table Display for Empty List

She also creates tests for a larger number. Suppose the table should only dis-
play 20 rows at a time. There would be a test that shows what happens if there
are more rows to display. For example:

One Greater Than Screen Size Display

Given the following data:

Table Data

Name Date Amount

James 2/21/2011 $5.00

Maxwell 1/23/2011 $.01

Agent 12/12/2011 $10.00

Plus 18 more rows...

The display should look like Figure 16.4.

Plus 17 more rows...

Name

James

Date Amount

2/21/2011

1/23/2011

12/12/2011

$5.00

$.01

$10.00

Maxwell

Agent

Previous 20 Next 20 1-20 of 21

Figure 16.4 Table Display for Numerous Entries

Tom might come up with a few more tests. He might want to see what hap-
pens if there are exactly 40 or some large number such as 10,000,000. Debbie
and Don might then decide that the component does not need to handle more
than a reasonable number of components, such as 1,000.

Instead of the buttons at the bottom to see the other items, the table could dis-
play 20 items but have a scrollbar if there are more. There would then be a test
that provided 1,000 items of data to see how fast the component could scroll.

Wow! eBook <WoweBook.Com>

ptg

Chapter 16 Developer Acceptance Tests150

The table data might have links associated with it. Suppose that clicking on
the name was supposed to go to a particular page associated with the data. The
links would be in the supplied data, and the test would look like this.

Table with Links

Given the following data:

Table Data

Name Date Amount Link

James 2/21/2011 $5.00 James.html

Maxwell 1/23/2011 $.01 Maxwell.html

Agent 12/12/2011 $10.00 Agent.html

The display should appear as Figure 16.5.

Name Date Amount

Maxwell 1/23/2011

2/21/2011

1/12/2011

$.01

$ 5.00

$10.00Agent

James

Figure 16.5 Table Display with Links

And clicking on a name should go to the link.

Click On

Name Go to Page?

James James.html

Maxwell Maxwell.html

Agent Agent.html

The table might offer a sorting feature. When the user clicks on a column
header, the rows should be sorted by the values in that column. Debbie gives
tests to Don to demonstrate what she means. The tests could include more rows
than fit on the screen to show that sorting is on the entire set of data, not just
the rows displayed on the screen. With just a few rows, here’s a test for the Date
column.

Wow! eBook <WoweBook.Com>

ptg

Summary 151

There are a lot of other considerations in the sorting. For example, what if
two values match? Which should come first? Or if the user clicks a second time
on a column header, should it reverse the sort? 4

Summary

• Developers should supply acceptance tests for components created by
other developers.

• Acceptance tests for display components should include combinations of
inputs that result in different display appearance or response.

• Acceptance tests for user interface components may be manual.

Sorted Table Display

Given the following display (see Figure 16.6):

Name Date Amount

Maxwell 1/23/2011

2/21/2011

1/12/2011

$.01

$ 5.00

$10.00Agent

James

Figure 16.6 Table Display Unsorted

When the user clicks on the Date column header, the rows should be sorted
by date, with the earliest date first (see Figure 16.7).

Name Date Amount

James 2/21/2011

1/23/2011

12/12/2011

$ 5.00

$.01

$10.00Agent

Maxwell

Figure 16.7 Table Display Sorted

 4 . Creating requirements and tests for the details of sorting a table is left as an exercise
for the reader.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

Chapter 17

Decouple with Interfaces

Wizard of Oz: “Pay no attention to that man behind the curtain.”

The Wizard of Oz

Developers can create acceptance tests for service implementations. The tests
can be both for accuracy and for performance.

Tests for a Service Provider
Cathy wants the ZIP code to be checked for customer contact addresses. Debbie
needs a service for the verification of a ZIP code for an address; she is not going
to code the service herself, but obtain it from another group. Dave is another
developer who is going to provide that service. As a backup plan in case Dave
cannot implement the service, Debbie may purchase it from an external vendor.

As the requester, Debbie needs to create acceptance tests for the service that
Dave will use to test his implementation. The tests should be independent of the
service provider. Ideally, she should not have to rewrite any of her production
code if the service provider is changed, so she creates an application program-
ming interface (API) that Dave should implement [Pugh01]. If she uses another
service provider, she will adapt its interface to this API. The tests that she writes
as well as her production application are coded to the API.

The Interface

Debbie creates an API that describes what she wants the ZIP code verification
interface to look like:

interface ZipCodeLookup {
 ZipCode lookupZipCode(String streetAddress,
 String City, StateID state) throws ZipCodeNotFound
 }

153

Wow! eBook <WoweBook.Com>

ptg

Chapter 17 Decouple with Interfaces111555444

“ZipCode” is a data class that contains the ZIP code. The lookupZipCode()
method needs to indicate an error if the ZIP code cannot be found. From a
programmer’s point of view, if the ZIP code was not findable, the method could
return the value of null or throw an exception that contained further informa-
tion. The “StateID” is a data class that contains a reference to a valid U.S. state
or territory.

There are other things that Debbie may need, such as the ability to get the
city and state that correspond to a ZIP code. If so, she would add that to the
interface.

Debbie provides the following table as an example of the tests she is going to
run against the interface.

ZIP Code Lookup

Street Address City State ZIP Code?

1 East Oak Street Chicago IL 60611

101 Penny Lane Danville VT 05828

1 No Place Nowhere OK NotFound

Dave may create an implementation that uses a subscription to the United
States Postal Service (USPS) web-service, a corporately-owned address valida-
tion program, or some other system. If Debbie needs a quick way to do an end-
to-end test, she might create a browser-simulator version that interacts with the
usps.com website and provides the answers found on that site. If she needs a
way to have a quick unit test for her code that uses this service, she might create
a “test double” (see Chapter 11 “System Boundary”) for ZipCodeLookup. The
test double might only return a small set of ZIP codes, such as the set listed in
this table.

The “StateID” data class listed in the interface specification needs to be
defined. Debbie can use a table to do that. She could include just the states or all
USPS recognized abbreviations.

StateID

Full Name Abbreviation

North Carolina NC

Massachusetts MA

... and more

The ZIP Code Lookup tests do not have to include states that are not in this
table.

Wow! eBook <WoweBook.Com>

ptg

Tests for a Service Provider 155

Quality Attribute Tests

Debbie can provide quality attribute tests for an interface implementation. The
initial test checks that the interface is working properly. She may also be con-
cerned with the performance of the implementation. If it takes a long time to
look up a ZIP code, then the user experience will suffer. So she can specify the
amount of time in a test. The time limits may differ based on the type of result
(success or failure) and the particulars of the data being passed to the service.

ZIP Code Lookup

Street Address City State ZIP Code? Time?

1 East Oak Street Chicago IL 60611 .01

101 Penny Lane Danville VT 05828 .01

1 No Place Nowhere OK NotFound .2

For a data-lookup style service, such as the ZIP code, Debbie could also make
up acceptance criteria for the completeness and accuracy of the data. The crite-
ria can be specified in a table such as:

ZIP Code Lookup Qualities

Completeness Accuracy of What Is Available

99.999% 99.9999%

Determining whether an implementation meets these criteria is a difficult task
and beyond the scope of this book. However if you have two implementations
of a service, you can at least cross-check them.

Comparing Implementations

In the case of ZIP Code Lookup, Debbie may be able to obtain two implemen-
tations of the interface. She may not know in advance what the correct results
are. All she knows is that the results of the two implementations need to match.
This is often the case when you have an existing system and you are rewriting
the system to use another technology. The external behavior of the new system
must match the existing system. So you first run one implementation and store
the results. This forms the acceptable values (the oracle [Bach01]) for the new
system. Then you run the second implementation and compare the results to
those found in the first implementation.

There are at least two ways to do this. The first way involves using variables.
It’s introduced here to show how a test can reuse results from earlier in a test.
The second way eliminates some redundancy.

Wow! eBook <WoweBook.Com>

ptg

Chapter 17 Decouple with Interfaces156

Using tables to represent this comparison involves creating some type of vari-
able. A variable is used to store the results of one action for use in a later action.
You need to be able have a way to show when a value is stored in the variable
and when it is retrieved. For the purposes of demonstration, we’ll use a → sym-
bol to show a value is stored into a variable and a → symbol to show the value
is retrieved from the variable. 1 Debbie creates the following table for the first
implementation of the interface.

ZIP Code Lookup Implementation = Dave’s

Street Address City State ZIP Code?

1 East Oak Street Chicago IL →eastoakzip

101 Penny Lane Danville VT →pennylanezip

1 No Place Nowhere OK →noplacezip

The ZIP codes are stored in variables named eastoakzip, pennylanezip, and
noplacezip. Debbie then makes the next table for the second implementation.

ZIP Code Lookup Implementation = USPS

Street Address City State ZIP Code?

1 East Oak Street Chicago IL ←eastoakzip

101 Penny Lane Danville VT ←pennylanezip

1 No Place Nowhere OK ←noplacezip

The ZIP codes returned by this implementation are compared to values stored
in eastoakzip, pennylanezip, and noplacezip. If a value does not match, an error
is indicated. If an error appears, Debbie cannot be sure which implementation
was wrong without further investigation.

If the number of comparisons was large, Debbie might use a second way to
compare the ZIP codes that eliminates some redundancy. Rather than use a
table to list the individual data items, she might create a module that does the
comparison internally. So all she would list are the input values. If a mismatch
occurs between the two implementations, the two answers can be shown in the
ZIP Code column as follows:

 1. The methodology and symbols used for storing and retrieving values vary in each
test framework.

Wow! eBook <WoweBook.Com>

ptg

Separating User Interface from Service 157

ZIP Code Lookup Comparison

Implementation = Dave’s

Implementation = USPS

Street Address City State Dave’s ZIP Code? USPS ZIP Code?

1 East Oak Street Chicago IL 60611 60612

101 Penny Lane Danville VT

1 No Place Nowhere OK

Comparing Implementations

Using and comparing two or more implementations is a common design
solution, particularly in critical systems. For example, in space flight, three
computers calculate the required flight operations, such as when to turn
on the rocket booster. The results of the three are compared. If all three
computers report the same results, the operation commences. If two agree
and one doesn’t, the majority usually wins and the report is, “Houston,
we have a problem that we can deal with for the moment.” If all of them
disagree, the flight reports, “Houston, we have a big problem.”

Separating User Interface from Service

Debbie has not specified how the state in the address is going to appear in the
user interface. She knows that separating the business rules from the display
makes for easier testing, as shown in Chapter 14, “Separate View from Model.”
There are at least four ways the state could appear on the user interface:

• A text box that accepts two-character abbreviations for the state

• A text box that accepts the full name for the state

• A drop-down list that contains the two-character abbreviations for each
state

• A drop-down list that contains the full name for each state 2

These are four display manifestations of the same requirement; they are not
four different requirements. They differ in the user experience. In the drop-down

 2. As a resident of North Carolina, I highly prefer the two-character drop-down list.
Can you figure out why?

Wow! eBook <WoweBook.Com>

ptg

Chapter 17 Decouple with Interfaces158

version, users cannot enter an incorrect state, but they may have to type more. 3

The selection of one is based on user quality feedback.
In any event, the field for the ZIP code should only allow either five or nine

digits to be entered. These are the two valid lengths for U.S. ZIP codes. Allow-
ing other characters or lengths would cause unnecessary calls to the ZIP Code
Lookup.

If Debbie had a field that allowed the user to enter a ZIP code, she would
check that ZIP code against the one returned by ZIP Code Lookup. How she
displays a mismatch is based on the desired user experience. The mismatch
might show up in a dialog box, as a line at the top of the dialog box, as a mes-
sage next to the ZIP code, or as a different colored ZIP code.

Separation of Concerns

The preceding example is being pretty U.S centric. Debbie might need to do
postal code matching for all the countries in the world. To keep things simple,
she could have a master table of all the countries that breaks out to tables of
tests for each country.

Country Breakout

Country ISO Code Input With Validate With

U.S.A. US US Address Form ZIPCodeLookup

Canada CA CA Address Form CAAddressValidator

...and many more

Reusable Business Rules

A business rule is something that is true regardless of the technology employed
(paper, computer, and so on). The rule that a ZIP code be valid for an address is
true regardless of whether the envelope is printed on a laser printer or handwrit-
ten. Implementations of business rules should be exposed so that they can be
used in multiple places, not just the middle tier.

For example, the user interface may require business rule checking to allow
errors to be identified in a more user-friendly manner. The ZIP code for cus-
tomer address may be verified as part of the input process. To avoid duplication

 3. Try to enter North Carolina in a drop-down that has full state names. How many
keystrokes does it take?

Wow! eBook <WoweBook.Com>

ptg

Summary 159

of functionality that would require duplication of testing, the user interface
should use the same module as the middle tier. The means for doing so depend
on the technology involved and are beyond the scope of this book. 4

Reuse extends beyond a single application. If a function, such as ZIP Code
Lookup, is used by multiple applications, Debbie would put the component into
an infrastructure or core system library. That would eliminate needing to have
tests applied to each application.

Summary

• Developer acceptance tests should be created for every service.

• A common API should be created for services that have multiple imple-
mentations.

• Create performance tests for service implementations.

• Create completeness and accuracy criteria for service implementation,
when appropriate.

• Create comparative tests for checking old versus new implementations.

• Keep tests for services separate from tests for user interfaces.

• Consider whether services are application services or core services.

 4. For example, you might use Ajax [Riordan01].

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

Chapter 18

Entities and Relationships

“The pure and simple truth is rarely pure and never simple.”
Oscar Wilde

This chapter presents a more complex system and introduces a model diagram
and its representation in tables.

Relationships

Sam’s system started off with a simple setup—a Customer table and a CD table.
The CD table had an entry for each physical CD. This corresponded to Sam’s
paper system, in which each CD had a separate index card that recorded its be-
ing rented. The table looked like this.

CD Data

ID Title CD Category Rented Customer ID Rental Due

CD3 Janet Jackson
Number Ones

Regular Yes 007 1/23/2011

CD7 Janet Jackson
Number Ones

Regular No

Entities and Relationships

A system is often more complex than Sam’s example. There are more entities
than just a CD, and there are relationships between these entities. The business
is the source of the information. Any diagrams, models, and tables are based on
the business’s understanding of the entities, not an underlying implementation.

161

Wow! eBook <WoweBook.Com>

ptg

Chapter 18 Entities and Relationships111666222

For Sam’s application, there are CDs that are physical copies of an album. If
Cathy describes the system with these two concepts, the triad should use these
terms. The relationship between CDs and albums can be shown in a diagram. A
common diagramming method is Unified Modeling Language [UML]. 1 The enti-
ties are shown in boxes in Figure 18.1. A simple way to represent the relation-
ship that a CD “is a copy of” an album is to have an arrow with a label drawn
between the two boxes.

Copy of

Album CD

Figure 18.1 Diagram of CD/Album Relationship

In addition, the ends of the arrow can be labeled with an indication of how
many entities are on each side of the relationship, as in Figure 18.2. The * states
that there can be many CD copies of an album, and the 1 says that each CD is
a copy of only one album. If there is a value, such as the UPC code, that relates
the CD to the album, you can add that to the diagram.

Copy of

UPC Code

* 1
Album CD

*
Copy of

1
Album CD

Figure 18.2 Diagram of CD/Album Relationship with Specific Relationship

Because the UPC code is what relates this CD to an album, the data for both
CD and album would include that value. The CD table now refers to the Album
table, as follows.

Album Data

UPC Code Title CD Category

UPC123456 Janet Jackson Number Ones Regular

1. See [Wiki06] and [Ambler01] for details.

Wow! eBook <WoweBook.Com>

ptg

Relationships 163

and

CD Data

ID UPC Code Rented Customer ID Rental Due

CD3 UPC123456 Yes 007 1/23/2011

CD7 UPC123456 No

Multiple Relationships

There could be another entity that Cathy talks about. Instead of a CD contain-
ing the state of being rented, there could be a separate concept of a rental. The
rental is related to and to the CD by the CD ID and to the customer by the cus-
tomer ID. Figure 18.3 shows this relationship.

Rental CD Customer

Rented by

Customer ID

Rented

CD ID

Figure 18.3 Diagram of CD Customer Rental

With this new organization, the CD does not contain the concept of whether
it is rented or not. That information is now kept in another entity: Rental. This
separation of concerns makes a better design and easier testing. Here’s what the
tables look like.

CD Data

ID UPC Code

CD3 UPC123456

CD7 UPC123456

Rental Data

CD ID Rented Customer ID Rental Due

CD3 Yes 007 1/23/2011

CD7 No

Customer Data

Name ID

James 007

Wow! eBook <WoweBook.Com>

ptg

Chapter 18 Entities and Relationships164

You can further simplify these tables if the triad approves. For example, the
Customer ID and Rental Due fields are blank if the CD is not rented. There
could be a convention that if the CD is not rented, an entry does not appear in
the Rental Data table. So if only CD3 was rented and not CD7, the table would
look like this.

Rental Data

CD ID Customer ID Rental Due

CD3 007 1/23/2011

With the additional entities, redundant information is eliminated. The number
of columns in each table is reduced, so there is less information to process. Using
these additional tables, the test for check-in 2 can be as follows. The setup part
could be in common with a number of other tests.

 2. The first three tables might be part of a common setup, as shown in Chapter 31,
“Test Setup.”

Check-In CD

Setup:

Album Data

UPC Code Title CD Category

UPC123456 Janet Jackson Number Ones Regular

CD Data

ID UPC Code

CD3 UPC123456

CD7 UPC123456

Customer Data

Name ID

James 007

Wow! eBook <WoweBook.Com>

ptg

Relationships 165

You could discover this more complex relationship after creating the initial
tests (in Chapter 10, “User Story Breakup”) that used a single table, such as the
first table in this chapter. You may not need to alter the original tests. You could
use them with what is called a view. The data in these three tables is combined
to appear as a single table. 3 The view decouples the way data is represented in
the database from the way the business deals with the data.

Given a customer with a rental:

Rental Data Customer ID = 007

CD ID Rental Due

CD3 1/23/2011

When the clerk checks in the CD:

Test Date

Date

1/23/2011

Check-In CD

Enter CD ID CD3

Press Submit

Then the CD is recorded as not rented and the rental fee is computed. (The
fee includes one late day.)

Rental Data Customer ID = 007

CD ID Rental Due

Rental Fee

Customer ID Name Title Returned Rental Fee?

007 James Janet Jackson
Number Ones

1/23/2011 $2

 3. An exercise for the technical reader is to determine how the three tables can be
viewed as the original single table.

Wow! eBook <WoweBook.Com>

ptg

Chapter 18 Entities and Relationships166

Alternative Representations

The Rental data could be kept after the CD is checked in as a history of rentals.
This history could be represented as a separate table for use in tests (such as in
Chapter 13, “Simplification by Separation”). For example, as shown here:

Rental History Data

CD ID Customer ID Rental Due Returned

CD3 88 12/21/2009 12/23/2009

CD3 007 1/23/2011 1/23/2011

If the business requirements stated that the rental history was only needed in
relationship to a CD, the history could be shown as a table embedded in another
table.4 This cuts down on the number of tables, but it also increases the table’s
size. For example, as shown here:

CD Data

ID UPC Code Rental History

CD3 UPC123456 Customer ID Rental Due Returned

88 12/21/2009 12/23/2009

007 1/23/2011 1/24/2011

Summary

• Relationships between entities can be diagramed for ease of unders tanding.

• Entity relationships can be shown in multiple ways in tables.

• The customer unit determines the preferred form of showing relationships.

• Tests should reflect the entities and relationships.

4. In domain-driven design (DDD) terminology, CD is the root of an aggregate.

Wow! eBook <WoweBook.Com>

ptg

Chapter 19

Triads for Large Systems

“It always takes longer than you expect, even if you take Hofstadter’s Law
into account.”

Douglas Hofstadter

This chapter shows how larger systems can have more and different triads. Some
projects do not require new customer acceptance tests. This chapter also exam-
ines a lack of acceptance tests.

Large Systems

Sam’s system had just two people, Debbie and Tom, as developer and tester.
Debbie was an omnipotent developer. She did everything from creating the over-
all architecture to designing the user interface to administering the database.
Tom did all sorts of testing, from helping with acceptance test development to
running performance testing tools to checking usability and performing explora-
tory testing. Teams for larger projects are sometimes composed of such ambi-
dextrous individuals. But often the range of technology involved and the scope
of the project do not allow individuals to cover the entire gamut of development
and testing. Nor does a single customer, such as Cathy, know every detail about
what needs to go into the system. Subject matter experts specify the require-
ments in their own particular area of expertise.

The triad still exists, just with different people. It becomes the subject matter
expert, the developer (or developers if you are doing pair programming), and
the functional tester (or people whose focus is one of these roles). They develop
acceptance tests for the particular stories or requirements with which the expert
is familiar.

For projects with larger implementations, teams often have an architect or
technical lead focus on the overall structure of a system to keep it consistent

167

Wow! eBook <WoweBook.Com>

ptg

Chapter 19 Triads for Large Systems111666888

with other systems. The system may encompass a single application or multiple
applications.

For teams like this, you have another triad: the architect, developer, and
tester (see Figure 19.1). The architect, Al, helps the developer unit make design
decisions that are consistent with the larger picture. The three work together to
determine a system’s modules and their interrelationships. The responsibilities
of each module are specified with acceptance tests, like the ones Debbie created
in Chapter 16, “Developer Acceptance Tests.” The triad develops these tests
collaboratively. Because all involved people are of a technical bent, the tests may
incorporate many non-customer-related terms. But everyone in the triad needs
to understand the terms and their implications.

Al
the

Architect

Tom
the

Tester

Debbie
the

Developer

Figure 19.1 The Technical Triad

Some tests for the modules are derived from the customer acceptance tests,
just as unit tests are derived from them. The process of deciding how many mod-
ules are required and which modules are responsible for fulfilling which parts
of the acceptance tests is a major facet of the architectural design process. This
process is covered in other books, such as [Fowler01].

One key that the team should focus on is getting an end-to-end system work-
ing soon after the start of the project. One customer acceptance test should be
demonstrated on the entire system. The feedback from the ease or non-ease of
developing for that test can yield helpful information to the triad as to whether
a particular architecture is suitable for the project. It also gives a baseline against
which to measure additions. When a new story is implemented, a customer
acceptance test may fail because an implementation changed its behavior. If the
behavior represented by the test is still required, the triad can review and pos-
sibly revise the architecture. This is before much work has been spent writing
code dependent on the architecture.

Wow! eBook <WoweBook.Com>

ptg

When a Customer Test May Not Be Required 169

With larger systems, you may have a database architect, Dana. Dana creates
the persistent storage that multiple applications require. She ensures that there is
no redundancy of information, such as storing a customer’s address in two dif-
ferent places. A different triad—the developer, the tester, and Dana (see Figure
19.2)—works to ensure that the developer has a way to make persistent all the
information needed to solve the story that the developer is working on. This col-
laboration operates the same way as the customer-developer-tester triad. Debbie
states what she needs and creates an acceptance test. Dana delivers the persist-
ence methods required. Tom may suggest additional tests. Again, the three peo-
ple in the triad may not have these titles; they are just the roles they play.

Debbie
the

Developer

Tom
the

Tester

Dana
the

Database
Architect

Figure 19.2 Another Technical Triad

As we have seen, the triad concept can work all the way up and down the
chain, from an overall software application down to the individual modules. The
triad consists of the requester, the implementer, and the tester who ensures that
all bases are covered. The triad is meant as a minimum for the number of people
in collaboration. You may have a quad, a penta, or a larger group as required.
However, it is often the case that the larger the group, the less members interact
and the less effective they are. So limit the number to those actually required
rather than those who just have a possible “want to know what’s happening.”

When a Customer Test May Not Be Required

Sam’s business is booming. He now rents not just CDs, but electronic books,
videos, and games. He has bought up a number of competitors. So now Al,
the architect, has the work of keeping a large set of diverse programs working
together. Al needs to combine systems so that the counter clerks use the same
system if they switch stores. The combination involves taking the data, such as

Wow! eBook <WoweBook.Com>

ptg

Chapter 19 Triads for Large Systems170

customers, from one system, and converting it to another. There are projects like
these that may not necessarily involve new customer acceptance tests.

Data Conversion

Al and Dana work together on the data conversion project. This conversion is a
mostly technical project, not a customer project. Al will be the one to write the
acceptance tests for the conversion. He will specify the measures of the cleanli-
ness of the conversion. For example, he may create the rules to determine that
a customer who resides on two systems is a duplicate. Al knows that Sam does
not want a customer showing up twice on the converted system.

There may be some business issues, such as differences in customer status
from one system to another. For example, Sam’s business rule for allowing
someone to reserve may be different from the business rule for an acquired
competitor. You can keep track of where a customer came from and incorporate
both rules. But that is Sam’s call.

There should be no new customer acceptance tests, because they have already
been created for the working system. The only exceptions would be tests that
check that the business issues, such as customer status, have been appropriately
handled.

Database Conversions

Dana has been informed that there is not going to be support for the current
database version that Sam’s systems use. Dana needs to convert to the next ver-
sion, or perhaps to a different system. This is not a customer need, but a tech-
nical issue. There are no new customer acceptance tests because the behavior
of the system should not change. All acceptance tests can work as a regression
suite. When the conversion is complete, the tests should still run as before.

If a project involves lots of stories for which there are no customer accept-
ance tests, it may well be a technical project. Often, large technical issues such
as database conversion are incorporated into customer-focused projects. The
customer often does not have knowledge of the underlying issues and therefore
has no ability to provide acceptance tests. If this is the case, the technical parts
should be broken into a technical project with a technical lead playing the part
of the customer. Projects such as an upgrade to a new database, a new version of
a language, or a new operating system are technical infrastructure issues.

What If There Are No Tests?

You have a system that has been acquired and for which there are no accept-
ance tests: no manual ones, and no automated ones. You need to make some

Wow! eBook <WoweBook.Com>

ptg

What If There Are No Tests? 171

changes, but what can you do? Let’s look at a couple of conditions. In one, you
may acquire the system from a vendor; in the other, you may inherit it from an
acquisition.

When you buy a vendor application, it may be configurable or customizable.
Configurable means that you set up values to make the application run in your
environment or with your set of data. The logic in the application uses this con-
figuration information to alter its operation in predetermined ways. You may
be able to add some additional features, such as a Microsoft Word macro, but
these macros use existing operations. Because the vendor should have tested all
operations, having acceptance tests is less critical.

Customizable means that you are provided with some source code for the
system that you alter to make a system work for your particular purpose. The
code provides some existing behavior that you are changing. In this case, you
should ask the vendor for acceptance tests—either manual or automatic. The
vendor response might be as follows: 1

• Don’t have any

• Have some, but all manual

• Have full set, but all manual

• Have full set: some manual, some automated

• Have full set, completely automated

If a vendor doesn’t have a full set, ask him how he knows the system works.
It could be that he has a full set, but contractually he is not required to provide
them to you. If you can’t find another vendor that will provide acceptance tests,
you are in the same situation as from an acquisition.

You have to change an acquired system that has few or no acceptance tests
in the area that you want to change. Chances are that the system has not been
designed to be tested [Feathers01].

First, create acceptance tests for the functionality you are going to change.
Inject the tests beneath the user interface if you can. Otherwise, run the tests
through the user interface, and automate the tests if possible. Every test should
pass as it documents the current working of the system. These tests will now run
as a regression test. Create an acceptance test for the change you are going to
make. Determine which of the current tests, if any, should fail once the change
is made. Then implement the change and test.

1. There are some gray areas that might be considered either configurable or
customizable.

Wow! eBook <WoweBook.Com>

ptg

Chapter 19 Triads for Large Systems172

Legacy Systems

One common issue with legacy systems is the lack of tests: both external accept-
ance tests and internal unit tests. 2 And often when there are external acceptance
tests, they are not automated. Making changes in the system and ensuring that
the changes do not have unintended effects is difficult.

Just as for an acquired system without tests, before making a change, cre-
ate acceptance tests around the portion of the system that is involved with the
change. The acceptance tests document how the system currently works. You
sometimes have more control over legacy systems, then those acquired from a
vendor. So the acceptance tests you write may be able to be run beneath the user
interface.

Then write acceptance tests for how the system should work once the change
is implemented. Initially, they should fail. Otherwise, the system is already doing
what the change request asks for. The feature was just not documented.

In many instances, you may have to write the tests as user interface tests. If
it’s possible, automate these tests. If the system design allows it, write the tests to
the middle-tier layer and automate them. Then proceed with the change. When
your new tests pass and any identified as “should break” fail, the system has
been changed correctly.

Suppose you don’t have tests around every functional piece of the system.
With the tests around the part of the system you are changing, you ensure there
are no side effects in that part. But you cannot be sure that the change has not
affected anything else.

 2. Michael’s Feather’s definition of a legacy code is anything without tests
[Feathers01].

Lack of Acceptance Tests Is a Debt

An acquaintance of mine asked me to estimate the cost of converting a web
application from a commercial application server to an open-source one
to save licensing fees. The application had been coded by a third party. I
examined the code and determined that there were only a very few vendor-
specific methods that would need to be changed. I gave him the estimate,
and he said it seemed reasonable.

I said that the estimate did not include fixing bugs that currently existed in
the system. He agreed to that. I suggested that my responsibility would be
over when the converted system passed all the automated acceptance tests.
He hesitated and replied that there were no automated acceptance tests.
I said then my responsibility would end when the system passed all the

Wow! eBook <WoweBook.Com>

ptg

Summary 173

Summary

• Larger teams have more triads consisting of the requester, the implementer,
and the tester.

• Focus on getting an end-to-end system passing the simplest tests.

• Some projects are developer related and should have developer-created
acceptance tests.

• If there are no acceptance tests for the portion of a system that needs to
change, create acceptance tests before making the change.

manual acceptance tests. He again paused and acknowledged that there
were no acceptance tests for the system.

I looked at him and stated that I could then have a converted system that
passed all the acceptance tests that afternoon for half the price. He smiled.
I then proposed that I would help develop acceptance tests for the current
system, because his staff did not have time to do so. That was agreed to.
In the end, the total cost of creating the tests and doing the conversion far
exceeded the license fees, so the project never got off the ground.

Projects such as conversions cost more due to the technical debt repre-
sented by the lack of acceptance tests.

Manual Testing

In one instance, a legacy system had acceptance tests, but they were severely
out of date. They were mostly manual tests, so they were executed infre-
quently (if at all). In addition, the developers could not be sure whether
the results were correct. A situation like this could become a nightmare,
because it appeared that the tests were available, but they really were not.
Sometimes with manual tests, the entire team participates in manual
regression testing. The testers provide scripts, and everyone devotes a day
or two every iteration to testing. This motivates the team to automate the
regression testing. With automation, the tests are run frequently.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

P A R T I I I

General Issues

This part contains general issues regarding acceptance testing.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

Chapter 20

Business Capabilities, Rules,
and Value

“Price is what you pay. Value is what you get.”
Warren Buffett

The triad discusses delivering value to the business in other ways.

Business Capabilities

Cathy would like to provide customers with discounts for repeat business to
keep them loyal to Sam’s store. She’s heard rumors about a competitive CD
rental store that Salvatore Bonpensiero is opening in town the end of the week.
Cathy has a vague idea for new things she can do for her customers, such as giv-
ing discounts for renting a lot of CDs.

Debbie notes that the system currently does not keep track of the number of
rentals for each customer. She roughly estimates that it would take at least an
iteration to start keeping track of this information and then applying it to the
invoices that are sent out.

After hearing Debbie’s estimate, Tom asked Cathy if she’d really like it by
the end of the week. Cathy replies with a definite yes. Debbie then suggests that
Cathy should print up some discount cards, as some other retail stores use. The
counter clerk can mark off the number of rentals on the card. When the card is
filled in, the customer gets a free rental.

Cathy loves the idea. It could be in place by the afternoon without software
changes. She and Tom start discussing ways to avoid a customer misusing the
system, such as faking the marks. Debbie suggests putting the customer ID on
the card. Cathy can record in a spreadsheet each day the customer IDs of the
discount cards that have been turned in for a free rental. If a customer has used

177

Wow! eBook <WoweBook.Com>

ptg

Chapter 20 Business Capabilities, Rules, and Value111777888

an abnormal number of cards, Cathy can investigate whether an issue needs to
be dealt with. Also, Cathy can get a good idea of how many CDs each customer
rents to see whether it makes business sense to spend the money on automating
the discounts.

Morale of the story: Not all capabilities need to be met by software. The triad
should consider any means that implements the requested capability.

Scenario Handling

Sam is reviewing the demo that Debbie and Tom are presenting. Sam asks a
question, “So what happens if something goes wrong with the hardware? Or we
have a hurricane that knocks out the power. Or...”

Debbie interjects, “Then we go back to a manual system. You won’t have
index cards anymore, but we’ll have blank contracts that Cary can fill out.
He’ll record the CD ID, the customer ID, the date rented, the date due, and the
amount. We’ll keep a printout of all CDs, with their categories, the number of
days in the base rental period, and the amount. We’ll see how long it takes Cary
to find information on a CD. If it’s really long, you might have a power outage
special in which all CDs can be rented for the lowest amount and the longest
time.”

“When the hardware comes back up, Cary, Mary, or Harry can enter the
information into the system. We’ll create a special screen for input of all
the information, rather than have the system calculate the return date and the
amount. In fact, because of the way we’ve designed the system for testing, we
already have a way to do this in the code. We just have to add a user interface
to the program.”

Morale of the story: Don’t try to deal with every possible scenario in software.

Every Exception Need Not Be Handled

My wife and I travel frequently. When we’re on the road, we like to pick
up a quick breakfast at a fast food place. We’re vegetarians, so that makes
it a little more difficult. Usually we stop at McDonald’s and order Egg
McMuffins, hold the meat. That item usually stops the order taker in her
tracks. She looks down at the keyboard and then back up. There’s no key
for Egg McMuffin without meat. Many times, the cashier has to call the
manager over to help her. There is a combination of keys that allows her
to enter such a weird order, but sometimes it takes three or four minutes
to enter our food order.

Wow! eBook <WoweBook.Com>

ptg

A Different Business Value 179

Business Rules Exposed

A business rule is something that is true regardless of the technology that is
employed. Whether rentals are kept on paper or in the computer, Sam wants to
limit the number of simultaneous rentals by a customer.

Sam has the business rule that a customer cannot rent more than three CDs
at any one time. He created this rule because he had a limited stock of CDs, and
he wanted to ensure there was sufficient choice in CDs for other customers. As
Sam’s inventory grows, the reason for the business rule may change. He may
want to increase the limit so that good customers who rent numerous CDs are
not disappointed. He might add a rule so that a customer is informed that they
had already rented a particular CD. In this case, the business rule could help a
long term customer save money on rentals by avoiding duplicates.

One of the primary purposes of a system is to make transactions comply with
the business rules. Business rules should be exposed so that they are easy to test
and easy to change.

A Different Business Value

The check-out workflow was modeled from what Sam had noticed in a regular
video store. The flow looked like this.

One time, we stopped at a Burger King. We ordered two Breakfast
Croissants, hold the meat. The order taker responded almost instantly with
the total. I couldn’t figure out whether the employee was better trained,
more experienced, or had a better keyboard layout. I looked at the receipt.
It said “2 Breakfast Croissants—Ask Cashier.” In the event of any off-
menu requests, the procedure was to ask the order taker for the details. It
sped up taking the order, which was a great benefit to the customer.

Not handling every exception in software not only saved development
time, but increased customer satisfaction. It was a win-win.
P.S. Someone finally fixed the issue of off-menu requests at McDonald’s.
Ordering goes a lot faster now.

Wow! eBook <WoweBook.Com>

ptg

Chapter 20 Business Capabilities, Rules, and Value180

The triad created a value-stream map from the renter’s point of view. The
renter wants to rent a particular CD, so that is the starting point. The end point
is the renter heading out the door with the CD. The renter wants to get in and
out as quickly as possible. So the triad figured that instead of the customer walk-
ing around looking at CD cases, he could just look on a computer screen and
select the CD. No more looking for the physical case. So the workflow would
be as follows:

As-Is Workflow

• The customer looks at CD cases that contain the title sheet.
• The customer picks the CD he wants.
• The customer brings the CD to the counter.
• The clerk retrieves the corresponding CD in its case from shelves behind

the counter and puts the title sheet case in its place.
• The clerk returns to the counter with the CD.
• The clerk scans the CD ID and customer ID.
• The contract is printed, and the customer signs it.
• The customer heads out the door with the CD he picked out.

Possible To-Be Workflow

• The customer selects the CD on the system.
• The customer enters his customer ID.
• The system notifies the clerk that a CD had been requested by the

customer and prints a contract.
• The clerk gets the CD and places it in a check-out box with the contract.
• The customer walks up with his customer card.
• The clerk retrieves the CD and contract and gives it to the customer.
• The customer signs the contract.
• The customer heads out the door with the CD.

This workflow is quicker and faster for both the clerk and the customer. Sam

also figured he could save a large chunk of store rental by eliminating the display
shelves with all the CDs. The clerks wouldn’t have to replace the CD cases when
the CD was returned. However, customers may prefer to browse titles being dis-
played on the shelves to find something new. Before implementing the change,
Sam needs to investigate how his customers would react to this change. That’s

Wow! eBook <WoweBook.Com>

ptg

Summary 181

in accordance with the principles of the charter (see Chapter 5, “The Example
Project”).

By looking at a larger value stream, the triad found a possible win-win situ-
ation for everyone. Software teams that consider the larger context may find
non-software improvements.

Summary

• Not all capabilities need to be met by software solutions.

• Software does not need to be able to handle every scenario.

• Software teams should examine workflows in which their software partici-
pates for bigger-picture improvements.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

Chapter 21

Test Presentation

“Ring the bells that still can ring
Forget your perfect offering.
There is a crack in everything,
That’s how the light gets in.”

Leonard Cohen

There is no perfect way of writing a test or a table. Alternative ways are pre-
sented here.

Customer Understood Tables

The key in selecting the form of a table is to pick the one that the customer unit
most easily understands. For example, here is the business rule table for rental
fees.

CD Rental Fees

Category
Standard
Rental Days

Standard
Rental Fee

Extra Day
Rental Fee

Regular 2 $2 $1

Golden Oldie 3 $1 $.50

Hot Stuff 1 $4 $2

183

Wow! eBook <WoweBook.Com>

ptg

Chapter 21 Test Presentation111888444

There are various ways you can document the tests for this table. You can
have a standard calculation-style table, such as this.

Rental Charges

Category Days Cost?

Regular 3 $3

Golden Oldie 3 $1

Hot Stuff 3 $8

Alternatively, you could have an individual table for each computation, as
here.

Rental Charges

Category Regular

Days 3

Cost? $3

Rental Charges

Category Golden Oldie

Days 3

Cost? $1

Rental Charges

Category Hot Stuff

Days 3

Cost? $8

There are forms of tables with labels that make the test read almost like a
sentence.1

1. This is a DoFixture table from the Fit Library by Rick Mugridge [Cunningham01].
Slim also has a version like this [Martin03].

Wow! eBook <WoweBook.Com>

ptg

Specifying Multiple Actions 185

Rental Charges

When renting a CD with category Regular for 3 days the charge
should be

$3

When renting a CD with category Golden
Oldie

for 3 days the charge
should be

$1

When renting a CD with category Hot Stuff for 3 days the charge
should be

$8

You do not need to use the same style table in all tests. The triad should select
the one most appropriate to the behavior being tested. In case of a disagreement,
the decision should be deferred to the customer unit.

Table Versus Text

The tests in this book have used tables to indicate the setups, actions, and
expected results. If the customer prefers, the tests can be expressed in pure text.
For example, the previous actions could be written as follows.

Rental Charges

Given a CD that is a Regular, when it is rented for 3 days, then the charge
should be $3.

Given a CD that is a Golden Oldie, when it is rented for 3 days, then the
charge should be $1.

Given a CD that is a Hot Stuff, when it is rented for 3 days, then the charge
should be $8.

Specifying Multiple Actions

Sam’s application has the business rule that a customer should not be allowed
to rent another CD after that customer exceeds the rental limit. You could show
this test as a sequence of action tables, such as this.

Wow! eBook <WoweBook.Com>

ptg

Chapter 21 Test Presentation186

Alternatively, you can specify all the actions in a calculation-style table. This
reduces the size of the test and can make it more understandable to all members
of the triad.

CD Rental Limit Reached

Given these rentals:

First rental:

Start Check-Out

Enter CD ID CD1

Enter Customer ID 007

Press Check-Out OK

Second rental:

Start Check-Out

Enter CD ID CD3

Enter Customer ID 007

Press Check-Out OK

Third rental:

Start Check-Out

Enter CD ID CD5

Enter Customer ID 007

Press Check-Out OK

Then the next rental should fail:

Fourth rental:

Start Check-Out

Enter CD ID CD2

Enter Customer ID 007

Press Check-Out Rental_Limit_Exceeded

Wow! eBook <WoweBook.Com>

ptg

Complex Data 187

In the first version, the notes appear before each table. In this version, those
notes are included in the table to explain each step in the test.

Complex Data

An embedded table can show the individual parts of particular columns. For ex-
ample, a customer with a name and an address that have individual parts could
be shown with embedded tables, as here.

Customer Data

Date JoinedAddressName

First Last Prefix

John Doe Mr.

Street City State ZIP

1 Doe Lane Somewhere NC 99999

03/04/2003

Another way of representing parts such as the address is to use a different
organization of the table. Each column represents a different level. As shown
below, the leftmost column is the topmost level. The next column breaks the
level into its parts. The rightmost column contains the values for each element.

Customer Data

Name

First John

Last Doe

Prefi x Mr.

Address

Street 1 Doe Lane

City Somewhere

State NC

ZIP 99999

Date Joined 03/04/2003

CD Rental Limit Reached

CD ID Customer ID Check-Out Status? Notes

CD1 007 OK 1st rental

CD3 007 OK 2nd rental

CD5 007 OK 3rd rental

CD2 007 Rental_Limit_Exceeded 4th rental

Wow! eBook <WoweBook.Com>

ptg

Chapter 21 Test Presentation188

Custom Table Forms

The tables in the test can represent whatever is most appropriate for the ap-
plication. If you were creating an acceptance test for an application that solves
Sudoku puzzles, you might have an input table that looked like this.

Sudoku Puzzle

1 4 7

2 5 8

3 6 9

4 7 1

5 8 2

6 9 3

7 1 4

8 2 5

9 3 6

The output table would look like the following.

Sudoku Solution

1 6 5 4 9 8 7 3 2

9 2 4 3 5 7 6 8 1

8 7 3 2 1 6 5 4 9

4 9 8 7 3 2 1 6 5

3 5 7 6 8 1 9 2 4

2 1 6 5 4 9 8 7 3

7 3 2 1 6 5 4 9 8

6 8 1 9 2 4 3 5 7

5 4 9 8 7 3 2 1 6

You might also have a test in which the puzzle has no solution or has multiple
possible solutions to see if the results match your expectation. A tester like Tom
might create a puzzle that has thousands of possible results or one that has only
a single digit in it to see how long it takes to get all the possible solutions.

In any event, the form of the test should be as compatible as possible with the
way the customer unit deals with the functionality.

Wow! eBook <WoweBook.Com>

ptg

Summary 189

Summary

• Use the form of the table that is easiest for the customer unit to under-
stand.

• If a standard table form is unsuitable, create a table form that is more ap-
propriate for the test.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

Chapter 22

Test Evaluation

“Program testing can be a very effective way to show the presence of bugs,
but it is hopelessly inadequate for showing their absence.”

Edsger Dijkstra

This chapter describes the characteristics of good tests. These characteristics
include being understandable to customers, not fragile, and test a single concept.

Test Facets

The following discussion of things to look for in tests came partly from Gerard
Meszaros [Meszaros01], Ward Cunningham, and Rick Mugridge [Cunning-
ham01]. Overall, remember that the tests represent a shared understanding be-
tween the triad.

Understandable to Customers

The test should be written in customer terms (ubiquitous language) (Chapter 24,
“Context and Domain Language”). The tables should represent the application
domain. If the standard tables shown in the examples are not sufficient, cre-
ate tables that the user can understand (Chapter 21, “Test Presentation”). Use
whatever way of expressing the test most closely matches the customer’s way
of looking at things. Try multiple ways to see which way is most suitable to the
customer.

The bottom line is to use what is easiest for the customer. If a basic action
table is not as understandable, add graphics to make it look like a dialog box. If
the customer needs something that looks like a printed form to understand the
material, rather than just the data, use that as expected output. You can also

191

Wow! eBook <WoweBook.Com>

ptg

Chapter 22 Test Evaluation111999222

have a simple test for the data to more easily debug what might be wrong with
the printed form (Chapter 12, “Development Review”).

Unless the customer wants values, use names. For example, use Good and
Excellent as customer types, not customer types 1 and 2.

As presented in this book, acceptance tests are customer-defined tests that are
created prior to implementation (see the book’s Introduction). You can execute
them as unit tests, integration tests, or user interface tests. Make the acceptance
tests written in unit testing frameworks readable, as shown in the example in
Chapter 4, “An Introductory Acceptance Test,” so that you can match them
with the customer’s expectations.

Spell Checked

Spell-check your tests. Tests are meant for communication, and misspelled
words hinder communication. The spell-check dictionary can contain triad-
agreed-upon acronyms and abbreviations. Define these acronyms and abbrevia-
tions in a glossary.

Idempotent

Tests should be idempotent. They should work the same way all the time. Either
they consistently pass or they consistently fail. A non-idempotent test is erratic;
it does not work the same way all the time. Causes of erratic tests are interact-
ing tests that share data and tests for which first and following executions are
different because something in the state has changed. Paying attention to setup
(Chapter 31, “Test Setup”) can usually resolve erratic tests.

Not Fragile

Fragile tests are sensitive to changes in the state of the system and with the inter-
faces they interact with. The state of the system includes all code in the system
and any internal data repositories.

Handle sensitivity to external interfaces by using test doubles as necessary
(Chapter 11, “System Boundary”). In particular, functionality that depends on
the date or time will most likely need a clock that can be controlled through a
test double. For example, testing an end-of-the-month report may require the
date to be set to the end of the month. Random events should be simulated so
that they occur in the same sequence for testing.

Changes to a common setup can cause a test to fail. If there is something
particular that is required for the test, the test could check for the assumptions it
makes about the condition of the system. If the condition is not satisfied, the test

Wow! eBook <WoweBook.Com>

ptg

Test Sequence 193

fails in setup, rather than in the confirmation of expected outcome. This makes
it easier to diagnose why the failure occurred.

Tests should only check for the minimum amount of expected results. This
makes them less sensitive to side effects from other tests.

Confirm the Environment

Many programs require that the platform they are installed upon meet a
particular requirement, such as a particular version of an operating sys-
tem. When the program is installed, the installation process verifies that
these requirements are met. If they are not, the installation terminates.

This approach is more user friendly than letting a program be installed
and then having the program fail because the environment is wrong. How-
ever, the program assumes that the environment does not change after it
is installed. Sometimes the installation of another program changes the
environment and causes the first program to fail.

To be less fragile, the program should confirm the required environment
every time it starts up. If the environment is not as expected, the program
should notify the user with an error message. That makes it much easier
for a user to determine what the problem is than a “This program had a
problem” message.

Test Sequence

Ideally, tests should be independent so they can run in any sequence without
dependencies on other tests. To ensure that tests are as independent as possible,
use a common setup (Chapter 31) only when necessary. As noted in that chap-
ter, the setup part of a test (“Given”) should ensure that the state of the system
is examined to see that it matches what the test requires. Internally, this can be
done by either checking that the condition is as described or making the condi-
tion be that which is described.

Workflow Tests

Often, there are workflows: sequences of operations that are performed to reach
a goal. You should test each operation separately. Then you might have a work-
flow test. A workflow tests includes multiple operations that need to be run in a
particular order to demonstrate that the system processes the sequence correctly.

Use case tests should have a single action table in them. Workflows that have
multiple use cases within them may have multiple action tables in their tests. Try

Wow! eBook <WoweBook.Com>

ptg

Chapter 22 Test Evaluation194

not to have too many complicated workflow tests. They can be fragile or hard to
maintain. See Chapter 28, “Case Study: A Library Print Server,” for an example
of a workflow test.

Test Conditions

A set of tests should abide by these three conditions: 1

1. A test should fail for a well-defined reason. (That is what the test is check-
ing.) The reason should be specific and easy to diagnose. Each test case has
a scope and a purpose. The failure reason relates to the purpose.

2. No other test should fail for the same reason. Otherwise, you may have a
redundant test. You may have a test fail at each level—an internal business
rule test and a workflow test that uses one case of the business rule. If the
business rule changes and the result for that business rule changes, you will
have two failing tests. You want to minimize overlapping tests. But if the
customer wants to have more tests because they are familiar or meaningful
to him, do it. Remember: The customer is in charge of the tests.

3. A test should not fail for any other reason. This is the ideal, but it is often
hard to achieve. Each test has a three part sequence: setup, action/trigger,
and expected result. The purpose of the test is to ensure that the actual
result is equal to the expected result. A test may fail because the setup did
not work or the action/trigger did not function properly.

Separation of Concerns

The more that you can separate concerns, the easier it can be to maintain the
tests. With separation, changes in the behavior of one aspect of the application
do not affect other aspects. Here are some parts that can be separated, as shown
earlier in this book:

• Separate business rules from the way the results of business rules are dis-
played (Chapter 14, “Separate View from Model”).

 1 . These came from Amir Kolsky.

Wow! eBook <WoweBook.Com>

ptg

Test Conditions 195

• Separate the calculation of a business rule, such as a rating, from the use
of that business rule (Chapter 13, “Simplification by Separation”).

• Separate each use case or step in a workflow (Chapter 8, “Test Anatomy”).

• Separate validation of an entity from use of that entity (Chapter 16, “De-
veloper Acceptance Tests”).

You can have separate tests for the simplest things. For example, the customer
ID formatting functionality needs to be tested. The test can show the kinds of
issues that the formatting deals with. If the same module is used anywhere a cus-
tomer ID is used, other tests do not have to perform checks for invalid customer
IDs. And if the same module is not used, you have a design issue. A test of ID
might be as follows.

Customer ID Format

ID Valid? Notes

007 Y

1 N Too few characters

0071 N Too many characters

Test Failure

As noted before in Chapter 3, “Testing Strategy,” a passing test is a specification
of how the system works. A failing test indicates that a requirement has not been
met. Initially, before an implementation is created, every acceptance test should
fail. If a test passes, you need to determine why it passed.

• Is the desired behavior that the test checks already covered by another test?
If so, the new test is redundant.

• Does the implementation already cover the new requirement?

• Is the test really not testing anything? For example, the expected result
may be the default output of the implementation. 2

 2. Any new test that passes the first time without a change in the implementation
should be made to fail by briefly changing the implementation. This ensures that the
test is actually testing something.

Wow! eBook <WoweBook.Com>

ptg

Chapter 22 Test Evaluation196

Test Redundancy

You want to avoid test redundancy. Redundancy often occurs when you have
data-dependent calculations. For example, here are the rental fees for different
category CDs that were shown in Chapter 10, “User Story Breakup.”

CD Rental Fees

Category
Standard Rental
Days

Standard Rental
Charge

Extra Day
Rental Charge

Regular 2 $2 $1

Golden Oldie 3 $1 $.50

Hot Stuff 1 $4 $2

Here were the tests that were created.

Rental Charges

Type Days Cost?

Regular 3 $3

Golden Oldie 3 $1

Hot Stuff 3 $8

Do you need all these tests? Are they equivalent? They all use the same under-
lying formula (Cost = Standard Rental Charge + (Number Rental Days – Stand-
ard Rental Days) * Extra Day Rental Charge). 3 When the first test passes, the
other tests also pass.

What if there are lots of categories? Say there are 100 different ones that all
use this same formula. That would be a lot of redundant tests. If there was an
identified risk in not running them, then they may be necessary. 4 A collaborative
triad should be able to cut down these tests to the essential ones.

Test variations of business rules or calculations separately, unless they affect
the flow through a use case or user story.

In an effort to avoid redundancy, don’t shortcut tests. Have at least one posi-
tive and one negative test. For example, there should be a test with a customer

 3. Depending on how the code is written, a single test might provide 100% code cover-
age. If you have that coverage, do you need more tests?

 4. These tests may not be performed during the standard build-test cycle if they take
excessive time.

Wow! eBook <WoweBook.Com>

ptg

Points to Remember 197

ID that is valid and one that is not valid. Be sure to test each exception. For
example, with the CD rental limit of three, have a test for renting three CDs (the
happy path) and four CDs (the exception path).

No Implementation Issues

Tests should be minimally maintainable. Make them depend on the behavior
being tested, not the implementation underneath. This way they require little
maintenance work. Unless the desired behavior has changed, the test should
not have to change, regardless of any implementation changes underneath. To
achieve this, design tests as if they had to work with multiple implementations.

Tests should not imply that you need a database underneath. You can have a
slew of file clerks who took down the data, filed it away in folders, and retrieved
it when requested. Of course, the system would take a little bit longer. The
tables in the tests such as CD Data represent the business view of the objects,
not the persistence layer view. They will be used to create the database tables,
so there will be similarities.

Points to Remember

When creating and implementing tests, consider the following:

• Develop tests and automation separately. Understand the test first, and
then explore how to automate it.

• Automate the tests so that they can be part of a continuous build. See
Appendix C, “Test Framework Examples,” for examples of automation.

• Don’t put test logic in the production code. Tests should be completely
separate from the production code. 5

• As much as practical, cover 100% of the functional requirements in the
acceptance tests.

 5. In some cases, such as hardware chip design, it is acceptable for production code to
have a built-in self-test to confirm that assumptions about the system’s environment
still hold and all elements of the system are functioning correctly.

Wow! eBook <WoweBook.Com>

ptg

Chapter 22 Test Evaluation198

In structuring tests, remember the following:

• Tests should follow the Given-When-Then or the Arrange-Act-Assert form
[AAA01].

• Keep tests simple.

• Only have the essential detail in a test.

• Avoid lots of input and output columns. Break large tables into smaller
ones, or show common values in the headers (Chapter 18, “Entities and
Relationships”).

• Avoid logic in tests.

• Describe the intent of the test, not just a series of steps.

A test has several costs involved in writing and testing it, executing it, and main-
taining it. The tests deliver the benefits of communicating requirements and
identifying defects. The incremental cost of a new test should be less than the
incremental benefit that that test delivers.

Summary

• Make acceptance tests readable to customers.

• Separate concerns—test one concept with each test.

• Avoid test redundancy.

Wow! eBook <WoweBook.Com>

ptg

Chapter 23

Using Tests for Other Things

“By fighting, you never get enough, but by yielding, you get more than
you expected.”

Lawrence G. Lovasik

Acceptance tests define the functionality of a program. But you can use them
for more than just that—measuring doneness, estimating, and breaking down
a story.

Uses of Acceptance Tests

Acceptance tests are a communication mechanism between the members of the
triad. They clarify the customer requirements and are a specification of how the
system works. But you can also employ them for other purposes. They are a
measure of how complete an implementation is; a means of estimating the effort
to implement a story, and a method for story breakdown.

Degree of Doneness

If there are multiple acceptance tests for a business rule or a story, the ratio of
successful tests to the total number of tests can provide a rough guide to how
much of the story has been implemented. For example, if you have ten accept-
ance tests and three are passing, the story is “about” 30% complete.

It is possible that the “worst” test case was saved for last. So the effort to
implement that story represents more than its fair share of the total effort. That
is why this is only a guide to doneness, rather than an exact measurement.

Make all the tests pass for a story before moving to another story. Otherwise,
you may wind up with lots of stories that are not done.

199

Wow! eBook <WoweBook.Com>

ptg

Chapter 23 Using Tests for Other Things222000000

Estimation Aid

An estimate may be required for implementing a story in many environments.
The number and complexity of the acceptance tests can be a rough guide to the
effort required to implement a story. The tests for a new story can be compared
to the tests run against completed stories. You can develop your own heuristics
as to how the number and complexity influence the effort. Large custom setups
(givens) and numerous state changes (thens) usually imply a much larger effort
than tests with small setups and few state changes.

Breaking Down Stories

You may need to break down a story into smaller stories for the purposes of
fitting stories into iterations. Mike Cohn [Cohn01] offers some ways to break
down a story. For example, you can start with a basic user interface and then
add more bells and whistles, such as images. You can implement something
manually, such as calling users about overdue rentals, and later automate it with
robot calling. You can do something simple, such as a single check-out per CD,
and then have a story for checking out multiple CDs at once.

In addition, you can use acceptance tests as a breakdown mechanism. The
test for each scenario of a use case can become a separate story. A complex busi-
ness rule can become a separate story. The test for a complicated business rule
calculation may be expressed in a table with lots of rows. You can break the
calculation into separate stories by assigning a set of rows to each story.

With the address example in Chapter 17, “Decouple with Interfaces,” the
tests themselves suggest a way to break down the story. The tests for a U.S.
address are separate from the tests for a Canadian address. Therefore, U.S.
address verification can be a different story than Canadian address verification.

Developer Stories

Another reason for breaking down a story is so that multiple teams can help
implement it. Chapter 16, “Developer Acceptance Tests,” showed how Debbie
made up acceptance tests for user interface components and functional modules
that are to be created by other developers. If a story has to be broken down,
you should create acceptance tests for each of the substories. The acceptance
tests help decouple the stories by clarifying the responsibilities of each of the
stories. They provide doneness criteria for each story. It is far more effective for
distributed teams to work on decoupled stories than to work on tasks for the
same story [Eckstein01].

Wow! eBook <WoweBook.Com>

ptg

Tests as a Bug Report 201

Tests as a Bug Report

For nontrivial bugs, you can write a test as documentation of the bug. The
definition of a nontrivial bug is something more than a misspelled word, a bad
color, or an unaligned dialog box. For each bug, the discoverer should create
an acceptance test that shows that the desired behavior has not been achieved.
With the bug, the acceptance test fails. When it passes, the bug has been fixed. 1

For example, suppose that you were coding the discount example in Chapter
4, “An Introductory Acceptance Test,” and you did not have an acceptance test.
If a bug was reported for a Good customer, you would create an acceptance test.
To ensure that the bug fix does not affect other behavior, include related test
cases that are currently passing. For example, here are tests around other values
for a Good customer. You might also have tests for the Excellent customer as
well, depending on the situation - the cost involved if the bug fix might alter that
Customer Rating as well.

Discount Acceptance Test

Item Total Customer Rating Discount Percentage?

$10.00 Good 0%

$10.01 Good 1%

$50.01 Good 1%

Root Cause Analysis

If a bug like the preceding appears, you have an opportunity to do root-cause
analysis.2 What you are looking for is why the bug appeared. Is it something in
the process itself, or was it a random event? Was the case in production not cov-
ered by a test case, and if so, why not? Were the data values not expected? For
example, suppose a data value was supposed to be between 1 and 100, but the
value in production was found to be 101. In that case, you create an acceptance
test that demonstrates the correct behavior—limiting the value to 100. Because
an acceptance test represents a requirement, the need for this acceptance test
being created after implementation may represent a missed requirement An ac-
ceptance test that has the wrong values is a misinterpreted requirement.

 1. In some complex situations, you can write an “unacceptance” test that passes with

the bug. The “unacceptance” test should fail when the bug is fixed. If it does not, the
changes did not totally fix the problem.

 2 . Other resources give detailed explanations of how to do this [Systems01] [Wiki07]
[Wiki09].

Wow! eBook <WoweBook.Com>

ptg

Chapter 23 Using Tests for Other Things202

The missed or misinterpreted requirement may be traced to a random event,
such as, “We had to get this done in four hours before release.” Alternatively,
it may be traced to a common cause, such as, “The customer never collaborates
with us before we start implementing.” 3

If you find yourself getting buried in analysis, try something you think might
prevent the problem from reoccurring and see what happens. If it doesn’t work,
try something else.

Production Bugs

One of the most important measures for a team process is the number of bugs
that have escaped to production. You should examine the root cause or causes
of each escaped bug so you can discover how to prevent more of them from
escaping in the future.

Regression Testing

The primary purpose of acceptance tests is to translate the customer require-
ments into code. If you have acceptance tests for all requirements, you can use
the set of acceptance tests as a regression test suite. Unless the requirement as-
sociated with an acceptance test changes, all acceptance tests should pass. If a
change is made to the implementation to accommodate a new requirement, all
previous acceptance tests should still pass. If previous tests break when a new
requirement is introduced, you may have issues in the design of your code.

If the acceptance tests are automated, run them as often as possible. This
provides immediate feedback that a change in the application has caused some
previously implemented functionality to break.

Summary

• You can use acceptance tests as any of the following:

• A rough guide to story completeness

• A rough way to estimate relative story effort

• A way to break up stories

 3. If the “We had to get this done in four hours before release” occurs more than once,
it is a common cause rather than a random event.

Wow! eBook <WoweBook.Com>

ptg

Summary 203

• Distributed teams that break up a story should have acceptance tests for
their part of the story.

• Examine the root cause of why an acceptance test was missed or incorrect.
If possible, change the process to eliminate the cause.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

Chapter 24

Context and Domain
Language

“England and America are two countries separated by a common
language.”

George Bernard Shaw

Communication requires a common language. During the collaboration in the
creation of acceptance tests, a common language emerges.

Ubiquitous Language

Domain-driven design (DDD) [Evans01], refers to the ubiquitous language. The
ubiquitous language involves the terms in which the customer and developers
talk about a system. The language arises from explanations given by a customer
or subject matter expert about the entities and processes in a system. The ubiq-
uitous language transforms itself and becomes more refined as developers and
customers discover ambiguities and unclearness.

The language evolves during the collaboration on the requirements and the
tests, as shown in Chapter 6, “The User Story Technique.” Contributions to the
language come from the column names in tables, the names of use cases and
their exceptions, and the business rules. Each term in the language should be
documented with a one-sentence description that the customer unit provides
and the developer and tester units understand. The customer unit leads the
terminology effort, but the developer unit can suggest that terms are unclear,
ambiguous, or redundant.

For example, the triad referred to entities as customer, CD, rental, and album.
They could be defined with single sentences as:

205

Wow! eBook <WoweBook.Com>

ptg

Chapter 24 Context and Domain Language222000666

• A customer is someone to whom we rent CDs.

• An album is an artist’s release.

• A CD is a physical copy of an album that is rented.

• A rental contains the information on a CD that is rented.

You can use tables in defining the terms. For example, the discount example
in Chapter 4, “An Introductory Acceptance Test,” referred to the terms Cus-
tomer Type and Item Total. The Customer Type can be defined by a table, such
as this.

Customer Type

Name Meaning

Regular A common customer

Good One we want to keep

Excellent One we will cater to his every whim

Order Total might be part of a larger picture table. You might show relation-
ships to other entities if that clarifies the picture.

Order Fields

Name Meaning Formula

Item Price What we charge for the item

Order Item Item on an order

Item Quantity Count of how many of an item is
ordered

Item Total Total price for a single item Item Price * Item Quantity

Order Total Total price for all items on an order Sum of all Item Totals

The triad should agree not only on the meanings of the entities, but their
identity and continuity. Identity is whether two entities are the same. For exam-
ple, if a rental contract is reprinted, it represents the same entity as the first
printout. However, a credit charge that is resubmitted may be construed as a
new charge, and the customer will get double-billed. If a customer checked in
two CDs within a short period, two legitimate charges could look the same. The
credit processor might interpret that as a duplicate billing and reject the second.

Wow! eBook <WoweBook.Com>

ptg

Two Domains 207

Continuity is how long an entity should persist. If a store customer wants
rental history to be completely private, a rental entity should persist only until
it is complete (that is, until the customer has checked-in the CD). On the other
hand, if Sam wants the rental history to determine favorite CDs for a customer so
he can offer him new releases in that same genre, the rental should be persistent.

Two Domains

The applicability of a ubiquitous language could be the entire enterprise. But of-
ten, that is too big a context, so it’s just for the portion of the enterprise. (DDD
refers to this as the bounded context.) So each portion of the enterprise has its
own domain. Two domains may overlap if they use common resources.

Figure 24.1 is an example of overlapping domains. Both Check-Out/In System
and the Accounting System use a common domain—Rental Fees and Charges.
This requires that for the two domains, the customers agree on a shared lan-
guage for the interface to the common one. 1

Test Doubles
for Rental Fees

and Charges

Output

Rental
Fees and
Charges

Acceptance
Tests

Accounting
System

Check
Out/In

System

Input
Input

Figure 24.1 A Common Domain—One-Way Interface

The existence of a common domain impacts the acceptance tests. In Figure
24.1, the interface between Check-Out/In and Rental Fees and Charges is one-
way (output only). The acceptance tests ensure that the proper data is being
created. The interface between Rental Fees and Charges and the Accounting
System is one way (input only). The test doubles allow the Accounting System
to be tested separate from the Check-Out/In system.

 1. It would be ideal if the terminology of both domains matched so that developers and
testers did not have to switch meanings when working on the other domain. But the
coordination effort required may not be worth it.

Wow! eBook <WoweBook.Com>

ptg

Chapter 24 Context and Domain Language208

Summary

• From collaboration on acceptance tests, a ubiquitous language emerges.

• Tests should be written using the ubiquitous language.

• Multiple systems using a common system need to agree on a ubiquitous
language for that common system.

What Is a Flight?

An airline system is really large. There are reservation systems, ground
operations systems, and flight operations, to name a few. The term flight
is pretty common. Consider how you, the customer, think of a flight. You
are going to catch a flight. Do you use the same reference whether your
journey is going to be on a single plane or whether you have to transfer
between planes?

The airplane you board is for a particular flight, identified by the flight
number. A particular flight number can represent the same airplane
traveling to many cities, only one of which you are interested in going
to. For example, Flight 1000 may go to Boston, then Philadelphia, then
Raleigh-Durham, then Atlanta. However, you may only be interested in
the Boston to Philadelphia portion.

As an example of continuity, the association between the airplane entity
and the flight entity is not persistent. You may fly on the same flight
number multiple times and get a different airplane.

Each part of an airline system may use the term flight in its own domain
context. For some parts, a flight represents the entire travel of a physical
airplane through its entire day. For others, it represents the route of an
entity identified by a flight number, regardless of what physical airplane
is flying it.

To keep some degree of commonality, there is an agreed-upon term for
the portion between a single takeoff and the subsequent landing: a leg.
When airline systems communicate with each other, they can communi-
cate about this common entity. For example, a leg is Flight 100 from Bos-
ton to Philadelphia.

Wow! eBook <WoweBook.Com>

ptg

Chapter 25

Retrospective and Perspective

“There are those who look at things the way they are, and ask why... I
dream of things that never were, and ask why not?”

Robert Kennedy

We’ve looked at acceptance tests from many different viewpoints. Here is a look
back at of some of the salient points and a look-forward to see how you can
apply it.

Recap

Now that the details of acceptance testing have been explored, it’s time for a
recap of how acceptance testing fits into the overall development process, as well
as a few overall facets. The tale in this book of Debbie the developer, Tom the
tester, and Cathy the customer has been a narrative one, with the goals and ben-
efits of acceptance test-driven development (ATDD) woven in. ATDD is a com-
munication tool between the customer, developer, and tester. It is about writing
the right code (fulfilling the requirements), rather than writing the code right
(design of the implementation). To summarize, the primary goals are as follows:

• Discover ambiguous requirements and gaps in requirements early on.

• Create a record of business/development understanding.

• Give feedback on quality.

209

Wow! eBook <WoweBook.Com>

ptg

Chapter 25 Retrospective and Perspective222111000

The secondary goals are these:

• Use acceptance tests as an executable regression test.

• Measure your progress toward completeness.

• Measure the complexity of requirements.

• Use the tests as a basis for user documentation.

Passing the functional acceptance tests is necessary, but it’s insufficient for
verifying a system. The system must pass other tests, such as those for quality
attributes (performance and reliability) and usability.

The Process

The project started with a charter that included objectives—acceptance tests
for the whole project. Features with acceptance criteria were developed. The
features gave an overall picture of what the system was going to do. Then the
features were broken into stories, each with its own acceptance criteria. The sto-
ries were detailed in use cases or alternatively in event/response tables. Specific
acceptance tests were written for the scenarios in the use cases, for individual
events, or for individual state transitions. Workflow tests could be created that
exercised more than a single use case.

Testing Layers

Acceptance tests, as used in this book, are customer-defined tests created prior
to implementation. You can use many of these acceptance tests at multiple levels
both as implementation validation tests and design verification tests. For exam-
ple, you can run the check-out and check-in tests as follows:

• Run manually as full integration tests through the user interface. The rent-
al contract values are checked on the printer output, and the credit charge
output is checked on the bank statement.

• Used as the basis for usability tests. As a user runs the test, he may see how
usable the system is.

• Run beneath the user interface with real databases in an almost-full inte-
gration test.

• Run with an in-memory database to run faster in a partial integration test.

• Run automatically as regression tests.

Wow! eBook <WoweBook.Com>

ptg

Recap 211

As another example, an almost-complete integration test might use a mock
mail server to which it sends mail. A complete integration test involves using
a real mail server (and appropriate e-mail addresses so that the tests aren’t a
source of spam).

The information in the acceptance tests provides information to all the
developers in a project. For example, the flow associated with the tests and
the actions performed give a framework that the user interface developers can
employ in designing the user experience. The database developers can design the
database structure based on the relationships between data, as shown in rows
and columns of the tests.

The Tests

Acceptance tests are customer-understood tests. They come from user stories,
business rules, or event/response tables. They exercise different scenarios in use
cases—the happy path and every exception path. A passing acceptance test is
a specification of how the system works. A failing acceptance test is a require-
ment that the system has not yet implemented. Initially, all acceptance tests for
a new system should fail. Otherwise, the system is already doing what has been
requested. An acceptance test failure may not help diagnose what caused the
problem. It simply indicates that there is a problem.

Unit tests are employed by the developers to help maintain and design the
implementation. A developer can use the acceptance tests as a basis for develop-
ing unit tests. If there is a test at the outer layer, some module inside must help to
pass that test. The unit tests can diagnose where the problem exists that causes
a failing acceptance test.

Architects or developers create component or module tests. These tests work
as internal acceptance tests to ensure that the individual pieces of a system cor-
rectly perform their responsibilities.

Acceptance tests suggest ways that a system might be controlled or observed
at levels lower than the user interface. For example, a business rule test may
connect directly with a module that implements it. A data lookup test may go
to a data access layer to retrieve information to ensure that the data has been
properly stored. Many tests are round-trip on the same layer. For example, they
perform actions on the middle tier and check the results at the middle-tier level.
Other acceptance tests may cross layers, such as input through the user interface
layer and output checking from the data access layer. Having an implementa-
tion required to meet the needs of acceptance tests for inputs and outputs makes
the system more testable. The proof of testability is that a system can be tested.
If the system provides a way to run the acceptance tests, the system is testable.

Implementing an acceptance test may require additional output that is not
part of the set of requirements. For example, a CD status report might show the

Wow! eBook <WoweBook.Com>

ptg

Chapter 25 Retrospective and Perspective212

status of every CD (rented or not rented). Such a report could be used to view
the results of a check-out or check-in test. Bret Pettichord calls the additional
control points and reporting points touch-points in the code [Pettichord01].

Communication

There are two points to remember about communication:

• Acceptance tests are not a substitute for interactive communication.

• Acceptance tests can provide focus for that communication.

What’s the Block?

Each member of the triad has read this book on ATDD. Okay, one hasn’t.
That’s a block. You need to be on the same page to collaborate. Just one party
such as the developer raving about how wonderful ATDD is may not help with
the change. All members of the triad have to realize the benefits of ATDD and
be in a position to implement it.

Often, customers feel they do not have the knowledge to give the specifics
necessary for the tests. They do not have to have all the information. The people
who have it need to be identified and brought into the collaboration process.
Customers may not have the time, or they may not be used to working at the
level of precision that acceptance tests require. Once again, they need to identify
someone—such as a business analyst or subject matter expert—who has the
time and can work at that level of precision. Just because the triad includes the
customer doesn’t mean that she has to be present; her designated representative
with the authority to make decisions can fill the chair.

Monad

Are you a monad? You get requirements without tests. You have no commu-
nication with the customer. You have no tester to help you. If you have no ac-
ceptance tests, you have no requirements. Why are you writing code if there are
no requirements? If the situation is such that it is absolutely necessary to start
developing, write the acceptance tests from what you understand the require-
ments to be, and code to them.

Wow! eBook <WoweBook.Com>

ptg

What’s the Block? 213

Unavailable Customer

The customer says, “Go away and work. I’ve given you all the information.”
Now if it’s an internal customer, you can appeal to shareholder fiduciary re-
sponsibility. You waste shareholder resources if you create a program that does
not provide business value or one that does not meet the real needs of the cus-
tomer. Don’t work on that project until the customer provides specific accept-
ance tests. If you are assigned to two projects, work on the other project or
spend some time learning a new skill. Alternatively, you can investigate who
else has the subject matter expertise to create the tests and request that person
be assigned to the project.

If it’s an external customer, be sure you are on a time-and-materials basis, not
fixed price. You may make money in reworking the implementation of unclear
requirements, but you may get an unsatisfied customer who never comes back.

Change

Virginia Satir [Satir01] developed a change model that describes how people
adapt to change. When a foreign element, such as ATDD, is introduced into
an organization, it upsets the status quo, which may cause chaos. Chaos comes
from the change in peoples’ roles. The customer unit is more involved with
providing examples. Testers create tests for an application that has not yet been
written instead of seeing a user interface. Developers test more.

Exiting the chaos comes from a transforming idea—“a sudden awareness of
and understanding of new possibilities.” In this book, you’ve seen examples of
the possibilities for ATDD. When you integrate the practice of ATDD into your
process, you will be in a new status quo—a more effective software development
organization. How to exit the chaos involves many aspects that are covered in
[Rising01].1

 1. See [Koskela02] and [Adzic01] for other change issues.

What Will It Take?

I was teaching a course a few years ago on being lean and agile. I always
ask why the students are in the course and what their backgrounds are.
One student said that he had completed an agile project. The customer
was more satisfied than with previous waterfall projects. The project was
completed under budget and in less time. He wanted more ammunition he
could present to management as to why the company should do another
agile project. I said that the points he raised were the best shot. I could give
confirming information, but if someone isn’t satisfied with those results,
I’m not sure I could convince him otherwise.

Wow! eBook <WoweBook.Com>

ptg

Chapter 25 Retrospective and Perspective214

Risks

There are risks associated with acceptance tests—particularly automated accept-
ance testing. Tests require maintenance, and changing requirements cause tests
to break. If the number of broken tests is large, there may not be time to fix all
of them before a release. If the broken tests are not fixed, their failure may start
to be ignored or signal that it’s okay to have a broken test. (See Broken Window
Syndrome [Wiki10].)

ATDD verifies that a system delivers what the requirements and tests specify.
It does not validate that the system is actually what the user needs. Having the
user, such as Cary, the clerk, is involved in the development process can reduce
the issues in delivering a useful system.

Benefits

A common complaint against acceptance testing is that it’s too expensive. If
you are going to test something and document these tests, it costs no more to
document the tests up front than it does to document them at the end. Adding
automation to the tests up front does add a little bit of work, but it can pay off
in reduced time for changes and the courage to refactor code to make it more
maintainable.

What have been the results of ATDD? The Epilogue contains success stories
from teams that have adopted ATDD. These stories give concrete examples of
how ATDD improves quality, maintainability, and the development process in
general.

ATDD produces improved quality as the triad gains a better awareness
of the system. Creating the tests forces the conversation of what the system
should do. The translation errors between requirements and implementation
are reduced because the tests form the common understanding between them.
Thinking through scenarios for tests identifies unclear requirements and can
identify where cases might have been missed. There is a reduced risk of deliver-
ing a system that does not meet the requirements, because it is not delivered until
it passes all the tests.

ATDD can create a more maintainable system. The terms used in the test
form a common language between customers and developers/testers. If the same
terms are followed in the implementation, it can be easier to understand the rela-
tionship of the code to the requirement. Writing the tests acts as a domain mod-
eling process. The relationships between the entities are captured in the tests.

Having the tests prior to implementation requires the code to pass those tests.
In the process, the code becomes more testable. The tests document how the
system works. Developer acceptance tests specify how a module works. Because

Wow! eBook <WoweBook.Com>

ptg

Summary 215

passing the tests shows how the system or module works, the tests are execut-
able specifications that, if run, will not become outdated.

In development, the tests provide a focus on what the developers should
implement. They write the code that needs to be written to pass a test. If the
code is not executed by a test, why is the code present?

Summary

• ATDD makes a system testable, which drives it to be of higher quality.

• The bottom line is that ATDD provides benefits to an organization.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

P A R T I V

Case Studies

This part contains cases studies from real-life projects.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

Chapter 26

Case Study: Retirement
Contributions

“First thing that I ask a new client is, ‘Have you been saving up for a rainy
day? Guess what? It’s raining.’”

Marty, Primal Fear

This case study presents testing a batch process with lots of exceptions and
states.

Context

You probably have a company retirement account administered by a financial
institution that receives money from your company each month and purchases
the mutual funds or other investments that you specified for your account. The
financial institution receives a contribution file from your company that has a
list of retirement plan participants and the amount that should be added to each
participant’s account. When the institution receives a statement from its bank
that your company has sent a deposit that matches the total in the contribution
file, it purchases the funds for each participant.

Figure 26.1 presents the overall flow of the process. The matching process
checks the participant identifiers in the contribution file against the correspond-
ing retirement plan. If each identifier matches and the bank deposit is correct,
the funding data is produced.

219

Wow! eBook <WoweBook.Com>

ptg

Chapter 26 Case Study: Retirement Contributions222222000

Matching
Process

Contribution File Funding

Bank Deposit Retirement Plan

Figure 26.1 Matching Process

Many retirement administrators have dedicated staffs (such as Customer
Service Representatives) that match each contribution file with the bank depos-
its. When a match is found, the customer service representative initiates the
fund purchases. Several administrators have initiated projects to automatically
perform the matching operation. The business case for these projects is to cut
down on the time spent by the customer service representatives.

Many issues can occur with the matching process. The amount of the deposit
may not exactly match the total in the contribution file. Or perhaps the deposit
notification will not arrive for several days after the contribution file is received.
Or multiple contribution files may be matched by a single deposit. Following
are some of the acceptance tests for an application which performs the matching
process.

The Main Course Test

The main course test assumes that the deposit amount exactly matches the total
on the amounts in the contribution file and that all identifiers listed in the con-
tribution file correspond to participants in the plan.

Setup

Each retirement plan has a set of participants who have decided how to invest
their contributions. Each plan is associated with a bank account from which
transfers are made to pay for purchasing of the funds.

Retirement Plan Plan ID = XYZ

Name Participant ID Fund

George 111111111 Wild Eyed Stocks

Sam 222222222 Government Bonds

Bill 333333333 Under the Mattress

Wow! eBook <WoweBook.Com>

ptg

The Main Course Test 221

Event

The event consists of two parts, which can occur in either order. One is the ar-
rival of the contribution file, and the other is the arrival of the deposit notifica-
tion. The Date Time Set makes the example repeatable.

Banking Relationship

Plan ID Bank Routing Number Account Number

XYZ 555555555 12345678

Date Time Set

January 30, 2011 08:18 a.m.

Here is the contribution file where all participant IDs match those in the
plan.

Contribution File Plan ID = XYZ, File ID = 7777

Participant ID Amount

111111111 $5,000

222222222 $1,000

333333333 $500

Here is the bank deposit whose amount matches the total of the amounts
in the contribution file.

Bank Deposit

Routing Number Account Number Amount Deposit ID

555555555 12345678 $6,500 8888

Expected

Because the conditions for matching have been met, the expected output is fund-
ing instructions.

Wow! eBook <WoweBook.Com>

ptg

Chapter 26 Case Study: Retirement Contributions222

Funding Plan ID = XYZ, File ID = 9999

Participant ID Fund Amount

111111111 Wild Eyed Stocks $5,000

222222222 Government Bonds $1,000

333333333 Under the Mattress $500

Matches

Deposit ID Contribution File ID Funding File ID Matched on Date Time

8888 7777 9999 January 30, 2011
08:18 a.m.

Implementation Issues

The way the setup works depends on your particular testing environment. The
setup tables, Retirement Plan and Banking Relationship, can either check that
the corresponding entries exist in the appropriate databases or insert them into
the databases if they do not exist. If they do not exist and they cannot be in-
serted, the test fails at setup.

The contribution table and the bank deposit table can be converted by the
fixture into data files that match the format of the data the system receives from
the companies and the bank. The matching program can then process these data
files as if they were actual files.

The matching program produces a funding file that another system proc-
esses. This funding file can be parsed and matched against the expected funding
output.

Separation of Concerns

Many other problems can occur during the operation of the system. The re-
ceived contribution file may not be in a readable format. This may occur the
first time the file is received from a company due to setup issues, or it may occur
repeatedly because of ongoing issues at the sending company. The files may be
in different formats because of each company’s human resource system. Those
problems can be dealt with by using another set of tests that read samples of
actual input files and check that either the file can be translated into a common
format or a conversion error must be dealt with manually.

Wow! eBook <WoweBook.Com>

ptg

One Exception 223

Business Value Tracking

Manual matching of deposits and contribution files takes an extensive amount
of time for a customer service representative. In a majority of the instances, the
match could be processed automatically. If the conditions did not hold (exact
match of amounts and all participants already enrolled in the plan), the match-
ing process could be performed with the current manual process. So there is high
business value in creating a program that handles the main course as quickly as
possible. The user story that encompasses doing the main course is given a large
business value.

There can be a number of exceptions during the process. The deposit and
contribution total may be off by a small amount (a few cents) or a large amount.
A participant who is not entered as a participant on the plan may be listed in the
contribution file. In that case, the matching program does not know what fund
should be purchased for that participant.

The exceptions can be dealt with by ranking them by business value. The
value represents some combination of the frequency of the exception and the
cost for a customer service representative to process it. For example, one excep-
tion is for a match that is off by a few cents. This event might occur frequently,
but the cost of the time involved to fix it exceeds the benefit.

One Exception

Each exception should have its own test to show that the exception is handled
properly. The tests might use a common setup. The only difference may be in
the event.

Here is an exception: The deposit is off by one cent. The customer unit decided
that any discrepancy less than a dollar should be handled using the equivalent
of “take a penny, give a penny.” The discrepancies will be kept on some form of
persistent storage, such as a database table or a log file. At some point, they can
be analyzed to determine if there is a systemic issue such as one company always
being two cents short. For the time being, the total of the discrepancies will be
reportable to the appropriate financial officer so that the books can be balanced.

Event

The setup is as for the main course. The event is different.

Wow! eBook <WoweBook.Com>

ptg

Chapter 26 Case Study: Retirement Contributions224

Expected

Because the conditions for matching have been met, the expected output is fund-
ing instructions.

Date Time Set

January 30, 2011 08:18 a.m.

Contribution File Plan ID = XYZ, File ID = 7778

Participant ID Amount

111111111 $5,000

222222222 $1,000

333333333 $500

Bank Deposit

Routing Number Account Number Amount Deposit ID

555555555 12345678 $6499.99 8889

Funding Plan ID = XYZ, File ID = 10000

Participant ID Fund Amount

111111111 Wild Eyed Stocks $5,000

222222222 Government Bonds $1,000

333333333 Under the Mattress $500

Matches

Deposit ID Contribution File ID Funding File ID Matched on Date Time

8889 7779 10000 January 30, 2011
08:18 a.m.

Now the issue is whether to show this as a separate table or as part of the
Matches table. Because the purpose is for balancing nonmatching funding, it is
shown as a separate table.

Wow! eBook <WoweBook.Com>

ptg

Another Exception 225

Another Exception

In this exception, a participant ID that is listed in the contribution file does not
have a corresponding entry in the retirement plan.

Event

Once again, you could use a common setup. The difference in the event is that
the contribution file contains an additional contributor who does not appear in
the funding data. The total matches the deposit.

Discrepancy

Deposit ID
Contribution
File ID Matched on Date Time Discrepancy Amount

88889 7779 January 30, 2011
08:18 a.m.

$–.01

Date Time Set

January 30, 2011 08:18 a.m.

Contribution File Plan ID = XYZ, File ID = 7779

Participant ID Amount

111111111 $5,000

444444444 $100

Bank Deposit

Routing Number Account Number Amount Deposit ID

555555555 12345678 $5,100 8892

Expected

Because the conditions for matching have been met, the expected output is fund-
ing instructions.

Wow! eBook <WoweBook.Com>

ptg

Chapter 26 Case Study: Retirement Contributions226

The missing participant needs to be reported somehow. A separate table
shows the information that is attributed to the participant. A separate user story
and set of tests will show how to handle this output.

Funding Plan ID = XYZ, File ID = 10001

Participant ID Fund Amount

111111111 Wild Eyed Stocks $5,000

Matches

Deposit ID Contribution File ID Funding File ID Matched on Date Time

8892 7779 10001 January 30, 2011
08:18 a.m.

Missing Participant

Plan ID Participant ID Matched on Date Time Participant Amount

XYZ 444444444 January 30, 2011
08:18 a.m.

$100

Two Simultaneous Exceptions

So what if two exceptions occur in the same processing? Should there be a test
for that? Often it is difficult to form an automatic response to the occurrence of
two exceptions for the same transaction, so the transaction is handled manually.
However, it would be useful to know that there are two exceptions so that input
doesn’t have to be manually processed twice—once for each exception. The test
then shows that two exceptions occurred. If the two exceptions are decoupled
(the response to one does not depend on the response to the other), the tests for
the individual exceptions may be sufficient, depending on the risk tolerance of
the project.

Event

Once again, the setup matches what it was for the main course. But both a miss-
ing participant and a nonmatching deposit are involved.

Wow! eBook <WoweBook.Com>

ptg

The Big Picture 227

Expected

No funding is produced. The output describes the exceptions that occurred
during the matching process. These exceptions can be tracked to determine
which combinations of multiple exceptions occur frequently. At some point,
the frequent combinations could be handled in code, rather than left for manual
processing.

Date Time Set

January 30, 2011 08:18 a.m.

Contribution File Plan ID = XYZ, File ID = 7780

Participant ID Amount

111111111 $5,000

444444444 $100

Bank Deposit

Routing Number Account Number Amount Deposit ID

555555555 12345678 $5,099 8893

Exception

Contribution
File ID Deposit ID Exceptions

7780 8893 Deposit_does_not_match_contribution_total

Participant_in_contribution_file_not_in_plan

The Big Picture

These tests have been focused on the context of the system. In the big picture,
not only do you have to create a funding file, you must actually purchase the
funds and record the transactions in each participant’s account. You need to
develop a larger test for this entire workflow. It may not necessarily be run as
an automated test. It may still require some test double. You would not want to
keep purchasing mutual funds and adding them to a participant’s account every

Wow! eBook <WoweBook.Com>

ptg

Chapter 26 Case Study: Retirement Contributions228

time you run this large test. So a test double for the actual purchasing interface
is required.

The big picture test may be beyond the developer unit’s scope. Their job is
to ensure that the funding instructions are correct based on the input. But the
project is not complete until the full test is run by the testing unit.

Event Table

The matching process is a batch process. It is not driven by user input, but by
events that occur. Therefore, an event table is appropriate for this case. Here’s
an example of some of these events.

Matching Events

Event Response Notes

Contribution file received Check for matching deposit

If so, perform match

Else store file

Bank deposit received Check for matching
contribution file

If so, perform match

Else store deposit

One week after contribution
file received

If no bank deposit received,
notify client

One week after bank deposit
received

If no contribution file received,
notify client

One minute prior to market
close

Disallow matching until after
market close

Prevents funding
issues

State Transition Table

The contribution file goes through several states that track its progress through
the matching process. These are some of the states that a file cvan be in.

Wow! eBook <WoweBook.Com>

ptg

State Transition Table 229

Contribution File

State Meaning

Received Contribution file received

Data Checked File has been examined for format errors

Awaiting Match Waiting for bank deposit

Edit Processing Contribution file has bad format

External events and internal events cause the state of the contribution file to
change or some processing to occur. This table describes some of the state tran-
sitions for the contribution file.

Contribution File State/Event Transitions

State Event Response New State Notes

Initial Received contri-
bution file

Record contri-
bution file

Received

Received Perform data
check

Data
checked

Examine file
for format
errors

Data checked Data check is
bad

Edit
processing

Need to cor-
rect errors

Data checked Data check is
good

Awaiting
match

A test can be associated with each state transition that is not already being
checked by another test. For example, for the first transition, you might have
the following.

Transition to State Received

Given a retirement plan:

Retirement Plan Plan ID = XYZ

Name Participant ID Fund

George 111111111 Wild Eyed Stocks

Sam 222222222 Government Bonds

Bill 333333333 Under the Mattress

Wow! eBook <WoweBook.Com>

ptg

Chapter 26 Case Study: Retirement Contributions230

Summary

• Separate concerns to make testing easier.

• Give each exception its own test.

• Test every state transition.

When a contribution file is received:

Date Time Set

January 30, 2011 08:18 a.m.

Contribution File Plan ID = XYZ, File ID = 7777

Participant ID Amount

111111111 $5,000

222222222 $1,000

333333333 $500

Then record it as received.

Contribution File States

Plan ID File ID Status

XYZ 7777 Received

Wow! eBook <WoweBook.Com>

ptg

Chapter 27

Case Study: Signal Processing

Lisa Simpson: Would you guys turn that down!
Homer Simpson: Sweetie, if we didn’t turn it down
for the cops, what chance do you have?

The Simpsons “Little Big Mom” (2000)

Acceptance tests for a real-time signal processing system are presented in this
chapter.

It’s Too Loud

I have produced software with Richard Cann of Grozier Technical Systems for
a number of years. Grozier produces sound level measurement systems. Numer-
ous concert sites, particularly outdoor ones, use these systems to monitor sound
levels for regulatory reasons and to act as good neighbors.

The systems are composed of embedded systems that run multiple programs.
Richard produces some of the programs, particularly the display and control
components. I produce the real-time signal analysis portion [Wiki08].

Sound Levels

The programs input the sound through the microphone input. Each second,
22,500 samples are recorded. The signal analysis programs perform calculations
on each of these sets of samples. The output is a measure of loudness, (techni-
cally the equivalent continuous sound level [Leq]). An overview of the process
is shown in Figure 27.1.

231

Wow! eBook <WoweBook.Com>

ptg

Chapter 27 Case Study: Signal Processing222333222

Analog–
Digital

Conversion
(Hardware)

Audio
Samples

Process
Samples

Leq

Figure 27.1 Sound Level Process

The sound is input through a microphone. The gain (how much the signal is
amplified) varies based on both the microphone and the volume setting on the
input. To correctly compute the Leq, you must adjust the gain so that a standard
sound source (a calibration source) produces a specific Leq result.

It is difficult to replicate the entire system (microphone, calibration source,
and so forth) for testing. However, you can capture the sounds by using regular
recording methods and then replay them as input (a test double) for the tests.
Suppose the sounds produced by the calibration source are captured in a cali-
bration file and sounds of known Leq are captured in separate files. These files
contain a second’s worth of data (22,500 samples). Then the test of the overall
system can be as follows.

Compute Leq

Given that the volume is adjusted so that calibration file (containing a
1KHz signal) yields the standard Leq:

Calibration

File Leq (db)

calibration.wav 94

The test files should produce values of the expected Leq.

Leq Tests

Input File Leq (db)?

test1.wav 88

test2.wav 95

To ensure that these Leqs are correct, the same test is repeated with calibrated
specialized hardware. The results of the hardware test become the oracle—the
agreed-upon expected result. This is similar to using the outputs of an existing
system to be the expected results for a new system.

Wow! eBook <WoweBook.Com>

ptg

Summary 233

Developer Tests

The details of the process are shown in Figure 27.2. It shows that there are
two intermediate results in the computation: the windowed samples and the
A-weighted samples.

Windowed
Samples

Apply
A-Weight

A-
Weighted
Samples

Compute
Leq

Leq

Analog–
Digital

Conversion
(Hardware)

Audio
Samples

Apply
Window

Figure 27.2 Details of Sound-Level Process

Richard is particularly interested in the final results. Is the Leq computed cor-
rectly for a particular file? As a developer, it helps if I can apply tests to interme-
diate results. These intermediate tests are usually termed unit tests because they
apply to lower-level modules. However, because Richard is highly experienced
in signal processing, he creates input and output files that can be used in accept-
ance tests for the intermediate processing works. For example, for the Compute
Leq part, he creates an A-Weighted sample file.

Compute Leq

A-Weighted Sample File Leq?

Aweight1.data 77

Aweight2.data 44

The input and output files contain digital samples for 1 second. Equivalent
files are available for each of the other steps in the process.

Summary

• Acceptance tests do not have to involve just simple values. They can be
entire sets of values (often represented in files).

• A subject matter expert can often create lower-level tests that can be used
as developer tests.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

Chapter 28

Case Study: A Library Print
Server

“There’s no such thing as a free lunch.”
Anonymous

Here is a library print server system. Libraries use such a system to charge for
printouts of documents. The example shows how acceptance tests can cover a
workflow and not just a use case.

The Context

I have consulted for Rob Walsh, the cofounder of EnvisionWare, in exploring a
new object design for the print server system the company provides to libraries.
In my book Prefactoring, I showed the unit test strategy and underlying object
design for the system. 1 I described the work flow with a concentration on how it
was implemented using the internal messaging system. The following workflow
concentrates on the acceptance tests.

A library patron, Joe, wants to print a document created on one of the
library’s computers. He submits the document for printing and then goes over
to a release station to print the job. There are two separate use cases that form
the work flow—submitting the document for printing and actually printing the
document—. Internally, the personal computer and the release station commu-
nicate with a central server (see Figure 28.1).

235

 1. See Chapter 15 in [Pugh01].

Wow! eBook <WoweBook.Com>

ptg

Chapter 28 Case Study: A Library Print Server222333666

Library
Computer

Central
Server

Print Release
Station

Printed
Documents

#1 Prints Document
 (File / Print)

#2 Requests
Printing

Print Job

Print Job

Joe

Figure 28.1 Workflow

There are a number of tests that ensure the individual steps work. For exam-
ple, some tests ensure that the print cost is correctly computed for various users
and different modes of printing—black-and-white and color. Other tests check
that users can deposit money into their prepaid accounts. The following is the
test for the entire workflow.

A Workflow Test

In this workflow, Joe submits two documents for printing and then goes to the
release station. When Joe signs onto the release station, he sees a list of the two
print jobs. Joe selects each one to print. Each job is printed, and Joe’s account is
charged. Here’s the detailed test.

Workflow of Printing Two Documents to Print Queue

Given a user with an account on the system:

User

Name Balance User ID

Joe $1.00 123

And these print rates:

Print Rates

B&W Per-Page Rate Color Per-Page Rate

$.03 $.10

Wow! eBook <WoweBook.Com>

ptg

A Workflow Test 237

And two documents to be printed:

Document

Name Number of Pages Contains

Joestuff.doc 1 The quick brown fox jumped over the
lazy dogs

Document

Name Number of Pages Contains

Morestuff.doc 7 --Lots of stuff--

And no print jobs currently on the print queue for that user:

Print Jobs User ID = 123

User ID Filename Print Mode Job Number

And the next job number is set:

Next Job Number

Job Number

99991

When the user requests the first document to be printed:

Request Printing

Enter User ID 123

Enter Filename Joestuff.doc

Enter Printing Mode Black & White

Press Submit

Then the system responds with:

Approve Print Charge

Display Print Charge $.03

Press Accept

Wow! eBook <WoweBook.Com>

ptg

Chapter 28 Case Study: A Library Print Server238

Now two print jobs have been created. The next step in the flow is for Joe to
go over to the release station and request each job to be printed.

If the user accepts, a print job is created.

Print Jobs

User ID Filename Print Mode Job Number

123 Joestuff.doc Black & White 99991

When the user requests a second document to be printed:

Request Printing

Enter User ID 123

Enter Filename Morestuff.doc

Enter Print mode Color

Press Submit

Then the system responds with:

Approve Print Charge

Display Print Charge $.70

Press Accept

If the user accepts, a print job is created.

Print Jobs

User ID Filename Print Mode Job Number

123 Joestuff.doc Black & White 99991

123 Morestuff.doc Color 99992

Workflow for Printing Jobs from Print Queue

Given that print jobs have been created for a user:

Print Jobs

User ID Filename Print Mode Job Number

123 Joestuff.doc Black & White 99991

123 Morestuff.doc Color 99992

Wow! eBook <WoweBook.Com>

ptg

A Workflow Test 239

When the user enters his user ID:

User ID Entry

Enter User ID 123

Press Submit

Then the list of print jobs is displayed.

Print Job List

Filename Job Number

Joestuff.doc 99991

Morestuff.doc 99992

When the user selects one file:

Select File to Print

Filename Joestuff.doc

Press Submit

Then it is printed on the appropriate printer.

Printed Output Selected File = Joestuff.doc

Output?

The quick brown fox jumped over the lazy dogs

And the file is eliminated from the display list and the print queue.

Print Job List

Filename Job Number

Morestuff.doc 99992

Print Jobs

User ID Filename Print Mode Job Number

123 Morestuff.doc Color 99992

Wow! eBook <WoweBook.Com>

ptg

Chapter 28 Case Study: A Library Print Server240

And the user’s account is charged the print cost.

User

Name Balance User ID

Joe $.97 123

When the user selects another file:

Select File to Print

Filename Morestuff.doc

Press Submit

Then it is printed.

Print Output Selected File = Morestuff.doc

Output?

--Lots of stuff--

Then it is eliminated from the display list and the print queue.

Print Job List

Filename Job Number

Print Jobs User ID = 123

User IDh Filename Print Mode Job Number

And the user’s account is charged the print cost.

User

Name Balance User ID

Joe $.27 123

Wow! eBook <WoweBook.Com>

ptg

Summary 241

Additional tests could show the flow if the user does not have sufficient
money to print a document or the user decides to cancel the printing of a
document.

Summary

• A workflow test consists of more than one use case.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

Chapter 29

Case Study: Highly
Available Platform

“You just call out my name,
And you know wherever I am
I’ll come running, oh yeah baby
To see you again.”

Carole King, “You’ve Got a Friend”

Many corporate software systems depend on a highly available platform. This
chapter shows increasingly detailed acceptance tests for such a platform.

Context for Switching Servers

A highly available platform has at least two independent computers. If one goes
down, the other available computers take over the load. If the servers are run-
ning close to capacity, not all the applications may be able to run. A predeter-
mined priority mechanism determines which applications get to run. In addition
to switching applications when a server goes down, in the case study, the system
administrator is notified either via email or a text message.

The capacity of a server to run applications depends on the demands of the
applications, such as memory, processor usage, and input-output operations.
Instead of being overwhelmed by all the details at once, this study shows how to
introduce the details gradually. This is another manifestation of the separation
of concerns guideline.

243

Wow! eBook <WoweBook.Com>

ptg

Chapter 29 Case Study: Highly Available Platform 222444444

Test for Switching Servers

The first test uses a simplified capacity that considers just the number of appli-
cations that can be run on each server. This test demonstrates that the servers
switch applications properly when one of them goes down. There will be a lot
of technical work to perform to make that happen. Starting with this simple
acceptance test keeps the developer unit working while the customer unit exam-
ines more detailed capacity issues.

Server Goes Down

Given these servers:

Servers

Name Capacity (Applications)

Freddy 5

Fannie 3

And these applications with their priority:

Applications

Name Priority

CEO’s Pet 100

MP3 Download 99

Lost Episode Watching 98

External Web 50

Internal Web 25

Payroll 10

And the servers running these applications:

Server Load

Name Applications

Freddy CEO’s Pet
External Web
Internal Web
Payroll

Fannie Lost Episode Watching
MP3 Download

Wow! eBook <WoweBook.Com>

ptg

Test for Switching Servers 245

A second test ensures that the next part of the flow is proper. Now that an
event has occurred, the administrator should be notified in the appropriate way.

When a server goes down, switch any applications running on it to the
alternate server. If the alternate server does not have the capacity for all the
applications, run the applications based on priority order.

Server Events

Event
Servers
Remaining? Applications Running? Action?

Freddy Goes
Down

Fannie CEO’s Pet

Lost Episode Watching

MP3 Download

Send event alert
“Freddy down”

Fannie Goes
Down

Freddy CEO’s Pet

Lost Episode Watching

MP3 Download

External Web

Internal Web

Send event alert
“Fannie down”

Send Alert to Administrator

Given these preferences for an event alert:

Administrator Notification

Notification
Preference Text ID E-Mail Action?

E-mail 123 AB@somewhere.com Send mail to AB@
somewhere.com

When an event occurs, send the event alert to the system administrator
based on the notification preference that the event occurred.

Event Response

Event Response?

Any event occurs Send Mail to AB@somewhere.com

Wow! eBook <WoweBook.Com>

ptg

Chapter 29 Case Study: Highly Available Platform 246

You can create a similar test for three servers if one of them is going down.
That test would show how to distribute the applications among the remaining
two servers.

Test for Technical Rule

Now that application switching works, more complex rules can be applied to
the capacity of each server. The selection of what applications to run is a sepa-
rable concern. The results can be tested independently of testing the switching
functionality.

For example, if a single server is running, the applications that can be run
depend on selecting the highest priority applications that can run within the
capacity. It’s possible that an application that has a higher priority cannot be
run because there is insufficient capacity. Then a lower priority application that
does not require as much capacity might be run.

In the following table, CPU usage is measured in millions of instructions per
second (MIPS). Memory usage is calculated in megabytes (MB). Input-output
usage is measured in total of reads and writes per second (RWS).

If the notification fails, send the event alert via the other method.

Notification Previous Action = Send Mail to AB@somewhere.com

Event Response?

Mail not deliverable Send text to 123

No response to mail Send text to 123

Determine Applications to Run on Server

Given applications with these characteristics:

Application Characteristics

Name Priority
CPU Usage
(MIPS)

Memory
Usage (MB)

Input-Output
Usage (RWS)

CEO’s Pet 100 1 1000 1000

MP3 Download 99 10 500 2000

Lost Episode Watching 98 5 200 3000

continues

Wow! eBook <WoweBook.Com>

ptg

Test for Technical Rule 247

In this test, “Lost Episode Watching” requires 5MIPS. The two higher pri-
ority applications—“CEO’s Pet” and “MP3 Download”—use 11MIPS of the
15MIPS available. So “Lost Episode Watching” cannot be run, but a lower pri-
ority application “External Web” requires only 3MIPS, so it can be run.

You can create similar tests for two or more servers. The creation of these
tests brings up issues of how to balance applications between two servers. Given
this test, it’s clear that if there were a second server, at least “Lost Episode
Watching” should be running, as long as the server’s capacity was greater than
that application’s needs. Or perhaps “CEO’s Pet” will run on the second server,
allowing “Lost Episode Watching” to run on the first one.

The tests for what applications should be run on what servers can become
fairly complicated. There are usually more issues, such as applications that need
specific devices that are only available on some of the servers, so they cannot be
run on the other servers.

Application Characteristics

Name Priority
CPU Usage
(MIPS)

Memory
Usage (MB)

Input-Output
Usage (RWS)

External Web 50 3 400 500

Internal Web 25 1 100 500

Payroll 10 8 10 1000

And a single server with the following capacity:

Server Characteristics

Name CPU Usage (MIPS) Memory Usage (MB)
Input-Output
Usage (RWS)

Fanny 15 2000 5000

Then it should run the following applications.

Application Running

Name
CPU Usage
(MIPS)

Memory Usage
(MB)

Input-Output
Usage (RWS)

CEO’s Pet 1 1000 1000

MP3 Download 10 500 2000

External Web 3 400 500

, Continued

Wow! eBook <WoweBook.Com>

ptg

Chapter 29 Case Study: Highly Available Platform 248

At some point, an additional test that combines the switching and the selec-
tion is created. From the acceptance point of view, this test need only demon-
strate that the switching takes into account selection based on the more complex
selection rule. Lots of other combinations of applications and servers may be
tested to ensure that the code and design do not have more esoteric defects.
There would also be acceptance tests for the switching time performance.

Summary

• Separate tests so that each checks a different part of the flow.

• Separation of concerns makes for simpler testing.

Wow! eBook <WoweBook.Com>

ptg

P A R T V

Technical Topics

This part contains some topics of interest to testers and developers.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

Chapter 30

How Does What You Do Fit
with ATDD?

“Then the part comes to me and it fits like a glove because it’s actually
written about me... All I had to do was show up and learn the lines.”

David Carradine

This chapter presents topics that are aimed at developers and testers, rather than
customers. It examines testing and designing.

Test Platforms

Depending on how long it takes to run the tests, you can run them at different
times. Tests on a developer’s machine should run pretty quickly. When the code
is transferred to the integration platform, you can run a series of longer tests.
There is a limit, however, to the number of tests that can be run in a short time,
say 15 minutes. So a smoke test 1 is used that consists of the most risky or the
most relevant.

You can run longer-running tests on a separate platform (see Figure 30.1).
There can be a set that is run at least a few times during the day, a set run at
night, another set over the weekend, or still another for a week at a time. If the
tests are successful on one platform, you start running the longer set on the next

251

 1 . The term derives from electrical engineers who used to design and build a circuit. If
the circuit smoked when they turned it on, they knew immediately that something
was wrong [Wiki04].

Wow! eBook <WoweBook.Com>

ptg

Chapter 30 How Does What You Do Fit with ATDD?222555222

platform. You probably can’t imagine tests that last a week, but a number of
complex systems require that long (and even longer). 2

Quick
Tests

(Developer’s
Platform)

15-Minute Test
Suite

Part of Build
(Integration
Platform)

Longer Test
Suite

Started by
Successful

Build
(Test Platform)

12-Hour Test
Suite

Nightly
(Test Platform)

48-Hour Test
Suite

Weekend
(Test Platform)

168-Hour Test
Suite

Weekly
(Test Platform)

Figure 30.1 Test Timing

2. Tests of compilers can take a long time.

A Little More Testing

In March 2007, a large airline migrated seven million reservations from
the Sabre reservation system to SHARES, another reservation system.
About one and a half million reservations did not transfer correctly. Pas-
sengers could not check-in for their flights. Kiosks in many cities stopped
working. The conversion took place over a weekend. On Sunday, many
passengers were stranded outside the security line because they could not
obtain a boarding pass. Many millions of dollars in revenue were lost, not
to mention customer dissatisfaction.
A little more testing might have gone a long way toward preventing the
problem [Fast01].

Internal Design from Tests

There has been little discussion on the internal design of an application. The one
suggestion was to make the module implementing a business rule easily avail-
able to testing, such as shown in Figure 30.2.

The Model-View-Controller pattern states that the model should be sepa-
rated from the view and controller. In this case, the model is the business rule
for determining whether a customer can reserve a CD. The view is how the user

Wow! eBook <WoweBook.Com>

ptg

Internal Design from Tests 253

sees the result of this business rule—button or dialog box. The controller is how
the user can make a reservation—the reservation dialog box. The view and the
controller should be coded separated from the model.

Reservation
Allowed
Module

Reservation Test

User
Interface

Test

Figure 30.2 User Interface and Logic Tests

The tests in Chapter 14, “Separate View from Model,” showed how the sepa-
ration of the model from the view made the tests simpler. The simpler tests show
up as simpler code. For example, suppose that the method used to determine
whether a customer is allowed to reserve is called:

Boolean Customer.allowedToReserve()

What this method does is obvious from its name. It returns whether a cus-
tomer is allowed to reserve by calculating the result according to Sam’s busi-
ness rule. The tests in Chapter 13, “Simplification by Separation,” apply to this
method.

The tests in Chapter 14 apply to the display. Because the calculation has
already been tested, the display need only be tested to see if it displays appropri-
ately. Simple tests usually correspond to simple underlying code. For example,
the way the display code would look if the button was to be enabled or disabled
might be this:

if (customer.allowedToReserve())
 enableReserveButton()
 else
 disableReserveButton()

If the button were to be shown or hidden, it might look like this:

if (customer.allowedToReserve()
 showReserveButton()
else
 hideReserveButton()

Wow! eBook <WoweBook.Com>

ptg

Chapter 30 How Does What You Do Fit with ATDD?254

If there were different dialog boxes, it could be this:

OnReserveButtonClick() {
 if (customer.allowedToReserve())
 displayReservationDialog();
 else
 displayNotAllowedToReserveDialog();
 }

In any case, the two tests to run for a customer who is allowed to reserve and
one who is not allowed to reserve will execute all the paths in this code. You
don’t have to run all the tests as shown in Chapter 13.

Device Testing

Every external device should have its own set of tests. For example, Debbie is
investigating use a bar code scanner to read the CD ID and the customer ID.
She needs to create developer tests for the bar code scanner to ensure that the
scanner can properly read the bar code. These are going to be manual tests un-
less Debbie can get a robot that will move the scanner. Here are some tests she
might come up with:

• Check that scanning a vendor-supplied bar code produces the correct out-
put.

• Create a bar code image with the printer, scan it, and check that the output
matches.

• Try scanning at different speeds, and check the output.

• Scan in both directions, and check the output.

Tom might come up with these ideas:

• Try a dirty bar code to see if it is readable.

• Try a ripped bar code to see if it is readable or produces an error.

• Try scanning a bar code in an off-axis direction.

You need to do all these tests with the device itself. These are developer accept-
ance tests. The change in input devices from the keyboard does not require new
acceptance tests from the customer. Debbie will have at least one acceptance test
that goes through the user interface to ensure that the connection to the scan-
ner is properly made. But she does not have to test all the previous conditions

Wow! eBook <WoweBook.Com>

ptg

Black Box Testing 255

through the user interface unless she identifies some risk in the integration of the
scanner with the system.

Starting with User Interfaces

Some customers want to see user interface prototypes as part of the requirement
process. You can use these prototypes as the basis for acceptance tests through
the user interface or through the middle tier.

Once the user interface prototype is approved, you can employ it as the basis
for tests. For each display screen, assign every entry field a label. For each screen,
make up an action table with those labels. The tests can execute the action table
either through the user interface or through the middle tier. Add “given” and
“then” parts to the tests that give the conditions—the data required—and the
expected results. Then create tables that show the business rules that apply to
combinations of inputs, such as the ones presented in this book. The tables will
clarify the cases that you may have missed by just looking at the user interface.

Black Box Testing

Acceptance test-driven development (ATDD) is closely related to black box test-
ing. Both are independent of the implementation underneath, so common black
box techniques apply. These include 3 the following:

• Equivalence partitioning, which divides inputs into groups that should ex-
hibit similar behavior. (See the tests in Chapter 10, “User Story Breakup,”
section “Business Rule Tests.”)

• Boundary value analysis, which tests values at the edge of each equivalence
partition. (See the example discount percentage tests in Chapter 4, “An
Introductory Acceptance Test,” section “An Example Business Rule.”)

• State transition testing checks the response from a system that depends on
its state. (See Chapter 15, “Events, Responses, and States,” section “States
and State Transitions.”)

• Use case testing to check all paths through a use case. (See the Check-Out
Use Case in Chapter 7, “Collaborating on Scenarios.”)

 3. See [Myers01] or [Kaner01] for details on these techniques.

Wow! eBook <WoweBook.Com>

ptg

Chapter 30 How Does What You Do Fit with ATDD?256

• Decision table testing for complex business rules. (See “The Simplified
Rule” in Chapter 13.) Often, the decision table is presented in the opposite
format, where rows and columns are interchanged from the format used
in this book. This book’s format follows that of many of the automated
testing tools.

Unit Testing

Unit tests help with the design and quality of the implementation. You get more
immediate feedback with unit tests, because only a small chunk of code is being
tested. It may take a while to implement enough code to pass an acceptance test.

You don’t want to duplicate testing between unit tests and acceptance tests.
In many cases, business rule tests can be written in a unit test framework, as
shown in Chapter 4. The purpose of acceptance tests is communication. Keeping
customer-provided tests in a form that customers can understand helps in this
communication.

If the terminology in an acceptance test changes, you may want to propagate
the changes to the classes and methods in an implementation to keep things in
sync.4

Summary

• Run acceptance tests as often as possible.

• Test devices separately from their connection to the system.

• Use black box testing techniques to develop acceptance tests.

 4. See [Adjic01] for more tester and developer issues.

Wow! eBook <WoweBook.Com>

ptg

Chapter 31

Test Setup

“It’s not what I do, but the way I do it. It’s not what I say, but the way I
say it.”

Mae West

This chapter discusses the trade-offs between using an individual setup for tests
and using a common setup. It also explores concerns about test order and per-
sistent storage.

A Common Setup

You may have noticed that the setup for several of the triad’s tests started to be
repetitious. All the tests need customers and CDs to rent or return. It is tempting
to place the repetitive setup into a common setup. There is a classic trade-off
between decreasing duplication by the common setup and increasing the possi-
bility that altering the common setup causes failing tests. 1 A common setup for
all tests might be as follows.

257

 1. This is an example in the test world of the “Splitters versus Lumpers” prefactoring
guideline for design [Pugh02].

Customer Data

Name ID Credit-Card Number

James 007 4005550000000019

Maxwell 88 372700997251009

Wow! eBook <WoweBook.Com>

ptg

Chapter 31 Test Setup222555888

This data forms a “test bed” for the other tests. If you make any changes
to this setup, such as to James’s ID or credit-card number, tests that depend
on those values will fail. They will fail not because the behavior of the system
changed, but because the test may now be specifying an invalid behavior. For
example, the Card Charge test would have James’s original credit-card number
on it, but James’s number has changed. A shared setup should remain constant.

On the other hand, the Rental table has more potential transactions than the
CD Data and the Album Data tables. Many tests require different values in this
table. For example, the data in this table are used for the tests of Check-In story
and the Customer Limit on Simultaneous Rentals business rule.

Rentals

CD ID Customer ID Due Date

CD12 007 1/21/2011

CD6 88 1/22/2011

CD20 88 1/23/2011

CD 21 88 1/24/2011

Customer ID 007 could be used for a regular check-in test. Customer ID
88 could not be used for a regular test, because ID 88 already has three CDs
rented. Keeping track of which customers are suitable for which tests requires
discipline. Without this discipline, using a separate setup in each test for the
appropriate data is far easier to maintain.

The common setup could be run for each test to get a clean start—“a Fresh
Fixture” as Gerard Meszaros terms it [Meszaros01]—or it could be run just

Album Data

UPC Code Title CD Category

UPC123456 Janet Jackson Number Ones Regular

UPC000001 Beatles Greatest Hits Golden Oldie

CD Data

ID UPC Code

CD2 UPC000001

CD3 UPC123456

CD7 UPC123456

Wow! eBook <WoweBook.Com>

ptg

Some Amelioration 259

once before a series of tests that do not affect the setup [Koskela02]. In this par-
ticular case, if the tests that are run add more rentals to ID 007 and this setup is
not rerun, ID 007 may reach the rental limit. Subsequent tests that assume he is
not at the limit will fail. 2

Some Amelioration

You can do some things to ameliorate potential problems. First, never change
existing data in the setup. Add to the setup if you need a different entity. For
example, if you need a customer with different characteristics, add another cus-
tomer. Some teams give names to the entities; customers who represent the kind
of entity they are dealing with might be Big Spender, Prompt Returner, and so
forth. For example, instead of Customer ID 88 being named Maxwell, he might
be named Customer Who Reached Limit if the previous Rental table was used.

Another way of handling the issue is not to have a common setup that is used
for every test, but ones that are common to a group of tests. The number of tests
that a change in the setup can affect is limited.

Still another way is to create variables in the common setup. For example,
you might define a variable (as shown in Chapter 17, “Decouple with Inter-
faces”) to contain James’s credit card, such as

4005550000000019 → JAMES_CREDIT_CARD

In each of the tests, you would reference JAMES_CREDIT_CARD rather
than the number. 3 For example, in the setup for the credit-card charges (Chapter
11, “System Boundary”), you might use the following.

Credit-Card Charges from Rental System Day = 1/21/2011

Card Number Customer Name Amount Time

←JAMES_CREDIT_CARD James $2 10:53 a.m.

 2. The approach taken starts to define a test architecture [Rup01], which should be
designed with the same care as the application.

 3 . This is an example of the DRY—Don’t Repeat Yourself—Principle from the Prag-
matic Programmers [Hunt01]. It is also known as the Once and Only Once Princi-
ple. A corollary of this principle is Shalloway’s Law. If there are N places where a
change has to be made, Shalloway will find N–1 of them.

Wow! eBook <WoweBook.Com>

ptg

Chapter 31 Test Setup260

Still another way of making tests less dependent on the setup is to use rela-
tive results. For example, you might be testing the ability to add a customer,
say Napolean Solo. Using this setup and an absolute result, the test would first
check that there is one customer in the customer data, perform the add, and
check the result to see that there are two customers. Using a relative result, the
test would first determine the current number of customers and then check to see
that the number of customers after the addition of Napolean Solo was the previ-
ous number plus one. 4 In both cases, the test would also check that Napolean
Solo was a customer.

Test Order

In many acceptance test frameworks, you have control over the sequence in which
tests are run. 5 If a test has no side effects, the order in which it is run relative to
other tests is unimportant. A side effect is a change to the state of the system or
an output to an external repository, as shown in Chapter 8, “Test Anatomy.” If
a test does have a side effect on the shared setup, such as deleting a customer, you
may need to run the tests in an order such that the deletion comes last.

You may be able to take advantage of complementary side effects. Suppose
one test adds a customer and another test deletes a customer. If you run these
tests one right after the other, the side effects should cancel out. 6

Running tests in a particular order, just like dependence on a common setup,
requires discipline. It can decrease the amount of testing code, because a test
assumes that the previous test has successfully executed. But maintenance of
the tests may accidentally change the order and cause tests to break, or it could
change the results of tests that later tests in the order depend upon. If tests are
tied together to run in a particular order, reproducing a test that fails requires
running all the preceding tests.

Persistent Storage Issues

Often, tests include altering entries in persistence storage, such as a database.
Even if the tests do not use the same entities, such as customers, they may leave

 4. A relative result is also referred to as a delta. A test that uses a relative result is called
a delta test.

 5 . This is not the case for unit test frameworks.
 6 . A log of operations can include entries on both of these operations. So the side effect

of logging is not cancelled out.

Wow! eBook <WoweBook.Com>

ptg

Summary 261

the database in a state in which it is not ready for the tests to be run again. In
that case, you need to restore the database to its original state.

Depending on your test environment, you may have a couple of technical
solutions to this problem. One solution is to simply restore the database from
a backup copy. Although this takes some time, it may be small relative to the
amount of time for all the tests. Alternatively, you could execute the tests within
a virtual machine. The virtual machine is closed upon test completion, and a
new clone of the virtual machine is used for the next test [Devx01].

A database on a test platform may consist of many records, so it may take
considerable time to restore the entire database. You could create a procedure
that backs up and then restores just the entities that have been affected by the
test. Alternatively, you could have a process that eliminates all traces of an entity
such as a customer. Then the tests could create that entity and use it for further
tests.7 Another approach to restoring persistent data to its original state, partic-
ularly for tests that add to the data, rather than modify it, is to time-stamp every
record. When the test is over, you would delete all records whose timestamps
are equal to or after the time at the beginning of the test. You could also create
a log of records that have been modified during the tests and restore the original
record once the tests have completed.

If you don’t have control of the database, what you can do is document
what the state of the system should be in the “Given” part of the tests. Then
if the state is not as expected, the test will fail not in the “When” part, but in
the “Given” part. That clarifies it is not the action that caused the failure. For
example, suppose you are testing adding a customer and the customer you want
to add is ID 99. You need to ensure that the customer does not already exist. So
you place this in the “Given” section. If you have a lot of these conditions, you
might separate them from the “Given” into an “Assume” section.

Customer Data

Name ID Exists?

Agent 99 No

Summary

• There is a trade-off in eliminating redundancy and causing dependencies
between a common test setup and individual test setups.

 7. This is like what happened to George Bailey in It’s a Wonderful Life.

Wow! eBook <WoweBook.Com>

ptg

Chapter 31 Test Setup262

• Use a common setup to create a test bed for further tests.

• Be cautious of tests that have side effects that alter conditions for other
tests.

• If using shared resources, document assumptions as to their condition.

Wow! eBook <WoweBook.Com>

ptg

Chapter 32

Case Study: E-Mail Addresses

“Beware of bugs in the above code; I have only proved it correct,
not tried it.”

Donald Knuth

This study involves breaking down a complex test, which represents a complex
business rule, into simpler tests. The simpler tests can decrease time in under-
standing and implementing the rule.

Context

Almost every application that involves communication requires an e-mail ad-
dress. When you enter an e-mail address, you should parse it to ensure that it
is in a valid format. The process of verifying that an e-mail address is actually
valid requires an exterior action, such as sending an e-mail to the address and
checking that it was not rejected.

The testers for one company had a set of e-mail address examples they uses to
test every application that had an e-mail address entry. The examples included
both correct and incorrect formatted addresses. The company also had a busi-
ness rule that e-mail addresses from some domains were not acceptable. These
domains included mail servers that allowed completely anonymous e-mail. A
portion of the tests is shown here.

E-Mail Tests

E-Mail Valid? Reason

George@sam.com Yes

George@george@same.com No Two @s

.George@sam.com No Invalid name

263

Wow! eBook <WoweBook.Com>

ptg

Chapter 32 Case Study: E-Mail Addresses222666444

E-Mail Tests

E-Mail Valid? Reason

George@samcom No Invalid domain

George+Bill@sam.com Yes + is allowed in name

George@hotmail.com No Banned domain

George@iamoutogetyou.com No Banned domain

...and many more

Every time an e-mail address was entered on an input screen, this entire set
of tests was run.

An E-Mail Trick

You may notice that George+Bill@sam.com is a valid e-mail address. The
+ is allowed in the part prior to the @ sign. It has a special meaning in most
e-mail systems. The e-mail is delivered to the part before the + (George
in this case). The full address (George+Bill) is used in the To part of the
e-mail. Your e-mail client (Eudora, Thunderbird, Outlook, and so on.) can
filter based on the part after the + (Bill) to put the message in a particular
folder or perform another action. Some e-mail systems or internal servers
may discard the + so that the mail instead goes to a user named GeorgeBill.
That represents a different user than George. If you try this trick, test this
on your system to ensure that it works before using the trick.

Breaking Down Tests

This acceptance test is pretty clear. When I ask developers how much time they
think it will take to program an e-mail validation routine that will pass this test,
they suggest a couple of days. I then suggest breaking down this test into smaller
ones may decrease the time.

We saw in Chapter 13, “Simplification by Separation,” that breaking down a
business rule into simpler business rules makes things easier to understand and
test. Each smaller table represents either a requirement or a test. Sometimes it’s
hard to distinguish between the two. The tables presented here represent either
details of an e-mail address from the business point of view or unit tests for a
module that implements e-mail format verification.

In the e-mail situation, we can use the rules that the Internet standards pro-
vide in RFC 2822 [IEFF01]. The first rule for a valid e-mail address is that it con-
tain one and only one @ symbol. The @ separates the name part of the address

Wow! eBook <WoweBook.Com>

ptg

Breaking Down Tests 265

from the domain part. For example, with ken.pugh@netobjectives.com, ken.
pugh is the name part and netobjectives.com is the domain. The official term for
the name part is local-part. So we will use that in our tables.

E-Mail Split into Local-Part and Domain

E-Mail Valid? Local-Part? Domain?

X@Y Yes X Y

XY No DNC DNC

XY@XY@XY No DNC DNC

DNC means “Do Not Care” because the e-mail is invalid. Usually, a devel-
oper says that it will take less than 15 minutes to implement code that per-
forms this check. It all depends on how familiar the developer is with the regular
expression library.

Local-Part Validation

According to the rules, the local-part must only contain the following characters:

• Uppercase and lowercase English letters (a through z, A through Z)

• Digits 0 through 9

• Period (.), provided that it is not the first or the last character and it doesn’t
appear two or more times consecutively

• ! # $ % & ’ * + – / = ? ^ _ ` { | } ~

The maximum size of the local-part is 64 characters. 1 We can put this free
text business rule into a table.

Local-Part Allowable Characters

Characters Allowed? Notes

a through z Yes

A through Z Yes

0 through 9 Yes

! # $ % & ’ * + – / = ? ^ _ ` { | } ~ Yes

. Yes If not first, last, or two consecutive

Anything else No

 1 . If you are actually following this case study to perform your own validation, you
may also want to eliminate characters that can inject SQL [Security01]. You would
not allow a single quote or a forward slash.

Wow! eBook <WoweBook.Com>

ptg

Chapter 32 Case Study: E-Mail Addresses266

We could have a test of the allowed characters for the local-part. Of course,
we need some test cases to see that the character rules are applied properly.

Local-Part Character Combination Tests

Local-Part Valid? Notes

George Yes

George\ No Character not allowed

George..a No Period appears twice in a row

.George No Period first

George. No Period last

And, of course, we should have some rules for length.

Local-Part Length Tests

Local-Part Valid? Notes

No Zero length

a Yes Minimum length

123456789012345678901234567890123456789012
3456789012345678901234

Yes Maximum length

123456789012345678901234567890123456789012
34567890123456789012345

No Exceeds maxi-
mum length

Now when I ask a developer how long it will take to implement just the local-
part rules, he usually says no more than an hour.

Domain Tests

The rules for domains are different than for the local part. The allowed charac-
ters are as follows.

Domain-Allowable Characters

Character Allowed? Notes

a through z Yes

. Yes Must have at least one

Cannot be first or last character

– Yes

0 through 9 Yes

Anything else No

Wow! eBook <WoweBook.Com>

ptg

Breaking Down Tests 267

A domain has a maximum of 255 characters, and periods separate the parts.
The top level is the rightmost part of the domain, the second level is the next-
most right part, and so forth. So for a domain with two periods, the levels are
as follows:

third-level.second-level.top-level

For example, the domain “www.netobjectives.com” has three levels. The
third level is “www”; the second level is “netobjectives”; and the top level is
“com”. Most e-mail addresses use a two level domain, such as “netobjectives.
com”.

There must be at least a top-level domain and a second-level domain. Most
e-mail addresses use just two levels, but there is no limit to the levels within the
confines of the maximum of 255 characters. Top-level domains are standard,
such as “com”, “org”, “net”, “us”, “ca”, “mx”, “tv”, and so on.

We have a few alternatives for the top-level domain part. We could have a
table that lists all valid top levels, such as this:

Top-Level Domain List

Top Level Valid?

com Yes

net Yes

us Yes

...and so forth for all possibilities Yes

Anything not listed No

But it might be work to keep this table up to date. As an alternative, we
could accept top-level parts that are at least two characters and at most four
characters. However, some top-level domains that might not be valid would be
accepted since they passed the simple rule. For example:

Top-Level Domain Parts

Top Level Valid? Notes

c No Too short

co Yes Minimum length

come Yes Maximum length

comet No Too long

The issue with having something that lists all domains is that when a new
top-level domain is created, the domain list table has to be updated. However,

Wow! eBook <WoweBook.Com>

www.netobjectives.com

ptg

Chapter 32 Case Study: E-Mail Addresses268

you can ensure that there is validation for all the ones that are currently in the
table. There is a generic aspect to this trade-off. The more specific you are,
the less possibility there is that something invalid will sneak through. However,
the less specific you are, the less often you’ll have to update anything if some-
thing new that fits into the model passes through. It’s your choice, based on
customer input.

Here are the tests for the domain structure.

Domain Breakdown Tests

Domain
Top-Level
Domain?

Second-Level
Domain?

Third-Level
Domain? Valid? Notes

A.B.COM COM B A Yes

COM No Must have
at least one
period

B.COM COM B Yes Could require
two

A.B.C.COM COM C B Yes Fourth level
is A

A.B.COM. No Cannot end in
period

.A.B.COM No Cannot begin
with period

And, of course, we can have a test for the maximum length of the domain.
That is left to an exercise for the readers.

Developers, when asked, usually suggest that it would take an hour or so to
code the method that this table could be tested against.

Disallowed Domain Tests

Finally, there is a list of disallowed domains, or domains that customers cannot
use. These domains permit people to send anonymous e-mails. Whether a par-
ticular application wants to disallow these domains is up to it. The following list
is static. If we wanted to be able to update the list, we would create tests to verify
that the list is updated correctly. This table represents the list. We could use it as
an input to the program or as a test to see that every domain on it is recognized
to be a disallowed domain.

Wow! eBook <WoweBook.Com>

ptg

Breaking Down Tests 269

Disallowed Domains

Domain Reason

Hotmail.com Anonymous mail

Imouttogetyou.com Spam source

Anymore ???

When developers are asked how long coding will take (without worrying
about updating the list), they usually answer around an hour.

The total time estimates from the individual pieces is usually around four
hours. The original time estimate from the combined test is often two days. By
breaking down the tests into smaller parts, the estimated time decreases because
each part appears simpler. In addition, the smaller parts are easier to program.

Test to Ensure Connection

You can run the same tests as presented at the beginning of this chapter against
a module that passes all these tests. That would ensure that all the validation
functions have been tied together properly. It’s possible that the test cases in this
table will fail because the results in these tables differ from the actual result. In
that case, you get to decide whether you should alter the underlying implemen-
tation to agree with these tests or alter these tests, because they actually do not
represent e-mail address validation correctly.

Verification Test

There are two parts to the validation process. The first is to make sure that the
e-mail address is properly formatted. The second is to ensure that a properly
formatted e-mail address actually represents a real e-mail address. Usually, you
send an e-mail to the address. If it bounces, it is invalid. The e-mail often con-
tains either a note to reply to the message or a link to a web page that can record
that the message was received. The table might look like this.

Actual E-Mail Address Check

Sent Message Bounced Received Reply Valid?

Yes No Yes Yes

Yes Yes Do not care No

Yes No No Unknown

No Do not care Do not care Unknown

Wow! eBook <WoweBook.Com>

ptg

Chapter 32 Case Study: E-Mail Addresses270

Summary

• Break up complicated conditions into smaller conditions.

• Smaller conditions are easier to test and code.

• Validation of correct format is only part of validation.

• Validate whether a correctly formatted value represents a real value (such
as e-mail address, customer ID, or CD ID).

Wow! eBook <WoweBook.Com>

ptg

P A R T V I

Appendices

This part contains business value estimation, automation examples,
and exercises.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

Appendix A

Other Issues

“This sentence contradicts itself—or rather—well, no, actually it doesn’t!”

Douglas Hofstadter

We’re done with acceptance testing. No, not really. Here are a few more issues
that didn’t seem to fit in the other chapters.

Context

When developing Sam’s system, the requirements and tests—check-out and
check-in—were created first. The existence of CDs and customers were a given.
Those tests form a context for other requirements and tests. Because entities
such as CDs and customers are needed, there is an implicit requirement for a
means to get them into the system. 1 The existence of those entities implies that
we probably need Create-Read-Update-Delete (CRUD) functionality for each
of them, as shown in Chapter 12, “Development Review.” Because the form of
acceptance tests for this functionality is fairly consistent, they may be created
by just the developer or tester and reviewed by the others. However, a higher
level of business rules may need to be applied to the operations. For example,
the customer may want to limit access to the operations. The CRUD functional-
ity gives the context for these limitations. A table can show the permissions for
every user type, such as:

273

 1. This is similar to Alexander’s design by context [Alexander01].

Wow! eBook <WoweBook.Com>

ptg

Appendix A Other Issues274

Operation Security-CD

User Type Create Read Update Delete

Counter clerk No Yes Yes No

Inventory maintainer Yes Yes Yes Yes

Customer No Yes No No

Another approach would be to create an entity, as a CD; determine its security
requirements; and then do the CRUD functionality. Then repeat the sequence
for the other entities.

Customer Examples

All examples that a customer creates can become tests [Marick01]. However,
not all tests are created directly from examples. Some, like the previous entity
tests, are indirectly developed. If the number of tests starts to cause confusion,
you can separate test cases into those that come from customer-provided exam-
ples and those created by the tester or developer to check other states or calcula-
tions.

Fuzzy Acceptance Tests

Suppose Sam wants to suggest CDs that a user might rent. This could be both a
user benefit and a sales tool. It’s unclear exactly what CDs should be suggested.
This is the case of a story that does not have absolute results. It’s fuzzy.

You can come up with algorithms for determining CDs to suggest. You can
test the implementation of these algorithms to see that they come up with the
expected results. That is a definitive test.

However, it’s difficult, if not impossible, to determine whether the resulting
suggestions help meet Sam’s expectations of more sales. Whether a suggestion
grabs a customer enough to rent the CD cannot be measured with the types of
acceptance tests we’ve been describing. It’s too fuzzy to test. 2 Another means for
measuring the results is needed. 3

 2. The sequel to the TV series Lost may address this.
 3 . It may be tested during system operations. A classic way is through A/B (Champion/

Challenger) testing [Decision01].

Wow! eBook <WoweBook.Com>

ptg

Requirements and Acceptance Tests 275

Acceptance Test Detail

A customer such as Sam may know what he wants but not be able to specify all
the detail. For example, he might want the check-out to be faster than his com-
petitors, but he doesn’t have the information on how fast that is. You can still
specify acceptance tests without all the detail. You can fill it in later. Or you can
use comparative results as shown in Chapter 17, “Decouple with Interfaces,” as
the expected outcome.

Requirements and Acceptance Tests

According to the Institute for Electrical and Electronic Engineers (IEEE), a
requirement is a “condition or capability needed by a user to solve a problem
or achieve an objective” or a “condition or capability met or possessed by a
system component to satisfy a contract, standard, specification or regulation.”
A requirements document usually should not include ways to implement the
requirements or a specific manifestation. Requirements should be testable/verifi-
able, modifiable, and prioritized. They should be clear, unambiguous, and com-
plete (at the time of implementation). Creating acceptance tests aids in creating
requirements that meet these characteristics.

The “manifestation” is how a system appears either externally or internally; it
is a result of design and implementation. Requirements may include constraints
on manifestation. Examples of external constraints are “The user interface shall
follow the corporate web standard” or “The interface to the merchant bank shall
follow its standards.” Internal constraints may include specific implementation
or design manifestations, such as “code in Java J2EE,” “use JavaServer Faces,”
or “employ corporate architectural framework.” Internal constraints are usually
instituted to reduce the number of technologies that must be maintained. You
may create acceptance tests for these constraints. However, tests are often more
a subjective measure of how well a manifestation meets the constraints.

An Anti-Missile Acceptance Test

The military likes to buy defensive weapons, such as anti-missile missiles.
This has a pretty clear acceptance tests. The anti-missile missile needs to
shoot down an incoming missile. If the system fails that test, it is useless.
The acceptance tests need a little more detail, such as defining the char-
acteristics of the incoming missiles—speed, size, ballistic or non-ballistic,
maneuvering, and so forth.

Wow! eBook <WoweBook.Com>

ptg

Appendix A Other Issues276

Documenting Requirements and Tests

You can use traditional applications—such as Microsoft Word, Rational Req-
uisite Pro, or Hewlett-Packard Quality Center—for keeping requirements and
associated tests. Alternatively, you can keep the requirements and tests in an eas-
ily editable online format, such as a wiki. 4 All members of the triad can update
the requirements and tests in a more collaborative environment. In either case,
you should link the objectives to the features, the features to the stories, and the
stories to the acceptance tests. As an application becomes larger, there becomes
a greater need to keep the documentation well organized and cross-referenced.

Decoupling Requirements

Decoupling tests from each other helps to decouple requirements from each
other. This decoupling follows along the same lines as Larry Constantine’s
[Constantine02] decoupling of program modules that makes for higher qual-
ity code. Decoupled requirements are easier to test. There is always a possibil-
ity that requirements are coupled to each other. Implementing one requirement
may break the implementation of another requirement unless this dependency
is recognized in advance. An example of coupled requirements was given in the
highly available disk storage systems in Chapter 12.

Separation of Issues

Creating customer data that matches a particular business rule can be difficult.
The initial discount example in Chapter 4, “An Introductory Acceptance Test,”
had discount levels based on whether a customer was good or excellent. There
was no specification given for what determines a good or excellent customer.
Suppose that a business rule using past order history determined the customer

The tests need not specify the characteristics of the anti-missile missile
that is needed—speed, maneuverability, antonymous versus guided. Nor
do they need to measure the accuracy for the radar that tracks the incom-
ing missiles.

All the implementation needs to do is to meet the overall acceptance test—
can it destroy an incoming missile with the stated characteristics?

 4. For example, FitNesse is a wiki version of Fit created by Robert Martin and Micah
Martin [Martin01].

Wow! eBook <WoweBook.Com>

ptg

The Power of Three 277

rating. (This rule might be simpler than Sam’s rules in Chapter 13, “Simplifica-
tion by Separation,” for determining whether a customer could reserve.)

Without worrying about how a good/excellent customer is determined, you
can easily verify the discount business rule. You can then create good, excellent,
and regular customers with the history required to match the customer rating
rule and run the business rule against those customers. Then you should run one
or more customers through the full test (the first test variation in Chapter 4).

Tom might come up with other tests for the customer rating rule. For exam-
ple, he might run it against the entire production set of customers to see how
many customers matched each rating. That test could suggest to the business
representative in Chapter 4 that a report of that type might come in handy.

Testing Systems with Random Events

Many systems have random events to which they respond. For example, the
sequence of check-outs and check-ins can vary dramatically. You can test the
functionality of the response to each event. You can also test the correct func-
tionality of a particular sequence of events. However, the testing of any random
sequence is more difficult to test. In particular, testing an implementation in
which timing of the events may expose a defect is a quality attribute issue. The
types of tests to uncover defects caused by errors in technical areas such as
threading or locking are beyond the scope of this book. See [IBM02] for more
information.

The Power of Three

The triad represents one manifestation of the power of three. The number three
occurs often in the world. Jerry Weinberg suggests that you should create at
least three ways to implement a requirement so that you can make a design
between them. You could explore at least three forms of tables to see which one
is most suitable for the customer.

The number three appears in many solutions in the non-software world. For
example, there are three ways to save on transport costs if you are shipping a
product. You can ship the product in larger batches; you can send it by a slower
method; or you can build it closer to your customers. With at least three alterna-
tives, you have an opportunity to compare, contrast, and pick the best or merge
the three options into a better one.

Wow! eBook <WoweBook.Com>

ptg

Appendix A Other Issues278

Summary

• Requirements and tests form a context for other requirements and tests.

• Separation of issues and decoupling requirement makes for easier testing.

Wow! eBook <WoweBook.Com>

ptg

Appendix B

Estimating Business Value

“What’s it worth to you?”

Anonymous

Creating software is about delivering business value. Without some measure of
business value, it’s hard to determine whether the software has any.

Business Value

Every feature in a system such as Sam’s should have business value. Business
value can come from numerous areas, such as these:

• Increased revenue (sales, royalties, fees)

• Decreased expenses

• Using fewer resources

• More efficient use of resources

• Customer satisfaction

• Product promoters/satisfiers/detractors

• Staying in business

• Avoiding risk

Business value in some areas is easy to quantify because it is straight dollars.
However, in other areas, quantification is more difficult. But without some way
to compare these “apples and oranges,” it is hard to determine which stories
should have higher priority. For example, should a story that saves $10,000 be
prioritized over a story that gives customers more satisfaction?

279

Wow! eBook <WoweBook.Com>

ptg

Appendix B Estimating Business Value280

One way to compare is to assign a relative business value to every story. The
customer unit has the responsibility to assign business value. The business value
does not have to be an exact measure. It’s just relative. If the $10,000 savings
seems to be the same as giving customers more satisfaction, the stories have the
same business value.

Relative determination may be made by putting the stories on the wall one
at a time. If a story has more business value than another story, place it above
that story. If it has less value, put the new story below, or if about the same, on
one side. If a story fits between two stories, move the stories and make space for
the new one in between. For example, in Figure B.1, Story Two has the highest
value, Story One and Story Three are about the same, Story Four has less than
those, and Story Five has a lot less.

Story Three

Story Two

Story One

Story Four

Story Five

Figure B.1 Relative Story Placement

You can use a Fibonacci series (1, 2, 3, 5, 8, 13...) or a power-of-two (1, 2, 4,
8, 16, 32, ...) series to assign stories in each row a value (see Figure B.2). Where
you start with the numbering is not important, as long as you assign the same
numeric value to equivalent stories in the future.

5

13

2

8Story Three

Story Two

Story One

Story Four

Story Five

Figure B.2 Relative Story Values

Periodically, you can measure the cumulative business value of the deliv-
ered stories (see Figure B.3). Because the key in agility is to deliver business

Wow! eBook <WoweBook.Com>

ptg

Developer Stories 281

value quickly, such a chart provides feedback for everyone to see the project is
progressing.

90

80

70

60

50

40

30

20

10

0
1 10 112 3 4 5 6 8 97

B
u

si
n

es
s

V
al

u
e

Iterations

Figure B.3 Business Value Chart

The developer and tester unit can estimate story effort in story points using
the same technique they used for business value. 1

A story’s business value estimate divided by the estimated story effort yields
rough return on investment.2 It is a rough guide to the relative return on invest-
ment. It can provide another value when the customer unit decides what stories
to develop.

If the iterations involve approximately the same relative amount of effort,
then the slope of the business value curve is roughly the return on investment.
The rate of increase in business value may be lower in the initial phases of a
project as either the business or technology domain is being learned. After an
increase in the rate, it may slow down when stories that have a lower return on
investment may be worked upon. At some point, the rate will be such that the
project should be terminated. There certainly will be other potential projects
that have higher return on investment.

Developer Stories

If a story is estimated to take a long time to implement, you can break it into
smaller stories. However, the customer unit must be able to realize business
value from one of the smaller stories. If he cannot, the smaller stories are

1. They could use story poker as described in [Shalloway01].
 2 . Also known as “Bang for the Buck.”

Wow! eBook <WoweBook.Com>

ptg

Appendix B Estimating Business Value282

developer stories; they exist to make it easier to track units of work. There may
be technical value in completing a business story, such as having a new display
component or a new service. When the technical value story is incorporated into
a business story, the business value is credited.

As noted in Chapter 15, “Events, Responses, and States,” and Chapter 16,
“Developer Acceptance Tests,” the developer should create an acceptance test
for every developer story. Depending on the story, it may not be possible to
create a specific test until there is collaboration with the implementer, but you
should have at least some criteria to be able to know when the story is done.

Is It a Technical Project?

As referenced in Chapter 19, “Triads for Large Systems,” some customer
stories require a lot of framework development. This translates into a
lot of developer stories. If you are in this situation, you have an embed-
ded technical project. There should be a “technical product owner” who
can break a customer story into “technical customer stories,” each with
acceptance criteria. And if the framework is vague enough, so these devel-
oper stories cannot be created, you should break this framework into its
own technical project, with the customer project being a test bed for it,
rather than vice versa.

Summary

• Estimate the business value for stories.

• Track the cumulative business value for delivered stories.

• If necessary, break stories into developer stories for tracking.

• The business value for a story is not achieved until all associated developer
stories are completed.

Wow! eBook <WoweBook.Com>

ptg

Appendix C

Test Framework Examples

“There’s more than one way to skin a cat.”

Anonymous

There are many acceptance test frameworks. This appendix has a few examples
for the application described in this book.

The Examples

These examples show how the tests in this book are expressed in different
frameworks. The corresponding table-style tests are in Chapter 10, “User Story
Breakup,” and Chapter 11, “System Boundary.” They all perform the following
operations:

• Set up persistent storage with a customer and a CD.

• Check-out a CD.

• Check-in a CD with a simple rental fee computation.

• Verify the computation of the rental fee for an upcoming change in how
rental fees are calculated, based on the CD category.

The Check-Out CD and Check-In CD tests are part of a workflow test. The
Check-In test assumes that the CD has been checked-out. If the tests are run
separately or not run in the required sequence, the setup would be performed for
each test. Then the given part of the Check-In test has to ensure that the values
for CD Data indicate that the CD is rented.

283

Wow! eBook <WoweBook.Com>

ptg

Appendix C Test Framework Examples284

Fit Implementation

Here is the Fit version, which uses just the three original Fit table types. You can
download the Fit version with the Java code from http://atdd.biz.

Setup

Clear out persistent storage:

fixtures.SetupDatabase

setup()

true

Add a CD:

fixtures.CDs

PhysicalID Title add()

CD1234567890 Beatles Greatest Hits true

And a customer:

fixtures.Customers

CustomerID Name add()

C007 James true

Check-Out CD

Given:

That a CD is not rented:

fixtures.CDData

PhysicalID Title Rented Customer ID StartTime

CD1234567890 Beatles
Greatest Hits

No

Wow! eBook <WoweBook.Com>

http://atdd.biz

ptg

Fit Implementation 285

And the date is:

fixtures.TestDate

Date set()

1/3/10 8:00 AM true

When:

The CD is checked out:

fit.ActionFixture

start fixtures.CheckOut

enter CustomerID C007

enter CDID CD1234567890

press Rent

Then:

The CD is recorded as rented at the checkout time.

fixtures.CDData

PhysicalID Title Rented Customer ID StartTime

CD1234567890 Beatles Greatest
Hits

Yes C007 1/3/10 8:00 AM

And the following data is ready to be printed on the rental contract:

fixtures.RentalContractData

CustomerID Customer
Name

PhysicalID Title RentalDue check()

C007 James CD1234567890 Beatles
Greatest
Hits

1/5/10
8:00 AM.

true

Wow! eBook <WoweBook.Com>

ptg

Appendix C Test Framework Examples286

Check-In

Given:

At a later date:

fixtures.TestDate

Date set()

1/8/10 8:00 AM true

And the CD is rented:

fixtures.CDData

PhysicalID Title Rented Customer ID StartTime

CD1234567890 Beatles
Greatest Hits

Yes C007 1/3/10 8:00 AM

When:

The CD is checked in:

fit.ActionFixture

start fixtures.CheckIn

enter CDID CD1234567890

press Return

Then:

The CD is recorded as not rented:

fixtures.CDData

PhysicalID Title Rented Customer ID StartTime

CD1234567890 Beatles
Greatest Hits

No

And charge data is prepared for the charging system.

(This is computed at $2 per day.)

Wow! eBook <WoweBook.Com>

ptg

Slim—Table Style 287

Category-Based Rental Fees

fixtures.RentalChargeData

CustomerName Title Return-
Date

Rental-
Fee

check()

James Beatles
Greatest Hits

1/8/10
8:00 AM

$10.00 true

Given fees based on categories:

fixtures.CDCategoryValues

Category RentalDays BaseRentalFee ExtraDayRentalFee add()

NewRelease 1 2.00 2.00 true

GoldenOldie 3 1.00 0.50 true

Regular 2 1.50 1.00 true

NotSet 2 1.00 1.00 true

When a rental is returned, the correct rental charge is computed.

fixtures.RentalFee

Category Rental Days Rental Fee()

NewRelease 5 $10.00

GoldenOldie 3 $1.00

Regular 3 $2.50

Slim—Table Style

Here is the FitNesse version using Slim, created by Markus Gaertner. Some
tables have been reformatted so they fit on the page. You can download this
version with the Java code from http://atdd.biz.

Wow! eBook <WoweBook.Com>

http://atdd.biz

ptg

Appendix C Test Framework Examples288

Header

variable defined: TEST_SYSTEM=slim
classpath: lib/*.jar
classpath: *.jar
classpath: bin

import

fixtures.slim

Setup

Clear out persistent storage:

SetupDatabase

setup?

true

Add a CD:

CDs

PhysicalID Title

CD1234567890 Beatles Greatest Hits

And a customer:

Customers

CustomerID Name

C007 James

Check-Out CD

Given:

That a CD is not rented:

query:CDData

PhysicalID Title Rented Customer ID StartTime

CD1234567890 Beatles Greatest Hits No

Wow! eBook <WoweBook.Com>

ptg

Slim—Table Style 289

Check-In

And the date is:

TestDate

Date

1/3/10 8:00 AM

When:
The CD is checked out:

script CheckOut

CustomerID C007

CDID CD1234567890

Rent

Then:
The CD is recorded as rented at the checkout time:

query:CDData

PhysicalID Title Rented Customer ID StartTime

CD1234567890 Beatles Greatest Hits Yes C007 1/3/10
8:00 AM

And the following data is ready to be printed on the rental contract:

query:RentalContractData

CustomerID Customer Name PhysicalID Title RentalDue

C007 James CD1234567890 Beatles
Greatest Hits

1/5/10
8:00 AM

Given:

At a later date,

TestDate

Date

1/8/10 8:00 AM

Wow! eBook <WoweBook.Com>

ptg

Appendix C Test Framework Examples290

And the CD is rented:

query:CDData

PhysicalID Title Rented Customer ID StartTime

CD1234567890 Beatles Greatest
Hits

Yes C007 1/3/10
8:00 AM

When:

The CD is checked in:

script CheckIn

CDID CD1234567890

ensure Return

Then:

The CD is recorded as not rented:

query:CDData

PhysicalID Title Rented Customer ID StartTime

CD1234567890 Beatles Greatest
Hits

No

And charge data is prepared for the charging system.

(This is computed at $2 per day.)

query:RentalChargeData

CustomerName Title ReturnDate RentalFee

James Beatles Greatest
Hits

1/8/10 8:00 AM $10.00

Wow! eBook <WoweBook.Com>

ptg

Slim—Cucumber Style 291

Category-Based Rental Fees

Given:

Fees based on categories:

CDCategoryValues

Category RentalDays BaseRentalFee ExtraDayRentalFee

NewRelease 1 2.00 2.00

GoldenOldie 3 1.00 0.50

Regular 2 1.50 1.00

NotSet 2 1.00 1.00

When :

A rental is returned, the correct rental charge is computed:

RentalFee

Category Rental Days Rental Fee?

NewRelease 5 $10.00

GoldenOldie 3 $1.00

Regular 3 $2.50

Slim—Cucumber Style

Here is the Slim version created by Bob Martin. It gives an idea of what text-
base tests look like. The text tests are connected to the scenario library. The
scenario library in turn discusses methods written for a particular language.

Setup

-!|CDs|

CD ID Title

CD1234567890 Beatles Greatest Hits

Wow! eBook <WoweBook.Com>

ptg

Appendix C Test Framework Examples292

Check-Out CD

-!|Customers|

Customer ID Name

C007 James

![script
Given that CD1234567890 is not rented.
And it is 8:00 on 1/3/2010.
When that CD is rented by C007;
Then it should be marked as rented by C007 at 8:00 on
1/3/2010.
And the rental contract for C007 should have name: James,
CD id:CD1234567890, Title:Beatles Greatest Hits, Due
date:1/5/2010, and time:8:00.
]!

Check-In CD

![script
Given that CD1234567890 is recorded as rented at 8:00 on
1/8/2010 by C007
When that CD is returned at 8:00 on 1/8/2010.
Then it is recorded as not rented.
And the rental receipt for C007 should have Name: James,
Title: Beatles Greatest Hits, Return Date: 1/8/2010, Return
Time: 8:00, Fee: $10.00.
]!
]!

Scenario Library

scenario Given that _ is not rented. CD

$CD= echo @CD

clear rental status of @CD

scenario And it is _ on _. TIME, DATE

set time @TIME

set date @DATE

Wow! eBook <WoweBook.Com>

ptg

Slim—Cucumber Style 293

scenario When that CD is
rented by _;

CUSTOMER

$CCUSTOMER= echo @CUSTOMER

rent cd $CD to user @CUSTOMER

sce-
nario

Then it should
be marked as
rented by _ at _
on _.

USER, TIME, DATE

ensure cd $CD is rented to @USER

ensure cd $CD was rented at @TIME on @DATE

sce-
nario

And the
rental con-
tract for
_ should
have name:
, CD id:,
Title:_,
Due date:_,
and time:_.

CUSTOMERID, CUSTOMERNAME, CDID, CDTITLE, DUEDATE,
DUETIME

rental
con-
tract
for

@CUS-
TOMER

ID

should
have
line
with
name

@CUS-
TOMER-
NAME

cd id @
CDID

title @
CD
TITLE

due
date

@
DUE-
DATE

due
time

@
DUE
TIME

scenario Given that _
is recorded as
rented at _ on _
by _.

CD, TIME, DATE, USER

ensure cd @CD is rented to @USER

ensure cd @CD was rented at @TIME on @DATE

Wow! eBook <WoweBook.Com>

ptg

Appendix C Test Framework Examples294

scenario When that CD
is returned at _
on _.

RETURN_TIME, RETURN_DATE

return cd $CD at @RETURN_TIME on @RETURN_
DATE

scenario Then it is recorded as not rented.

ensure cd $CD is not rented.

scenario And the rental receipt for
_ should have Name: _,
Title: _, Return Date: _,
Return Time: _, Fee: _.

CUSTOMER, NAME, TITLE, RE-
TURN_DATE, RETURN_TIME, FEE

check name on receipt for @CUSTOMER @NAME

check title on receipt for @CUSTOMER @TITLE

check return date on receipt for @CUSTOMER @RETURN_DATE

check return time on receipt for @CUSTOMER @RETURN_TIME

check fee on receipt for @CUSTOMER @FEE

Category-Based Rental Fees

CD Category Values

Category Rental Days Base Rental Fee Extra Day Rental Fee

NewRelease 1 2.00 2.00

GoldenOldie 3 1.00 0.50

Regular 2 1.5 1.00

NotSet 2 1.00 1.00

Rental Fee

Category Rental Days Rental Fee?

NewRelease 5 10.00

GoldenOldie 3 1.00

Regular 3 2.5

Wow! eBook <WoweBook.Com>

ptg

Robot 295

Robot

Here is the Robot version created by Dale Emery. It is available at http://atdd.
biz.

Setup

Settings
Resource _keywords/actions.txt
Resource _keywords/cd.txt
Resource _keywords/charge.txt
Resource _keywords/contract.txt
Resource _keywords/date.txt

Test Cases
Sams Add a CD

Sams Adds CD "CD1234567890" with Title "Beatles Greatest
Hits"

Sams Add a Customer
 Sams Adds Customer "C007" with Name "James"

Check-Out CD

Verify that the CD is Not Rented
 Verify that the Rental Status for CD "CD1234567890" is "No"

Set the Date for Rental
 Set Date "1/3/10 8:00 AM"

The Customer Rents the CD
 Customer "C007" Rents CD "CD1234567890"

Verify that Sams Recorded the Rental
 Verify that the Rental Status for CD "CD1234567890" is "Yes"

Verify that the Rental Customer ID for CD "CD1234567890" is
"C007"
Verify that the Rental Start Time for CD "CD1234567890" is
"1/3/10 8:00 AM"

Verify that the Rental Contract Describes the Rental
 Verify that the Rental Contract Customer ID Is "C007"
 Verify that the Rental Contract Customer Name is "James"
 Verify that the Rental Contract CD ID is "CD1234567890"

Verify that the Rental Contract CD Title is "Beatles
Greatest Hits"

 Verify that the Rental Contract Due Date is "1/5/10 8:00 AM"

Wow! eBook <WoweBook.Com>

http://atdd.biz
http://atdd.biz

ptg

Appendix C Test Framework Examples296

Check-In CD

Set the Date for Return
 Set Date "1/8/10 8:00 AM"

The Customer Returns the CD
 Customer Returns CD "CD1234567890"

Verify that Sams Recorded the Return
Verify that the Rental Status for CD "CD1234567890" is
 "No"

Verify that the Rental Charge Describes the Rental
 Verify that the Rental Charge Customer Name is "James"

Verify that the Rental Charge CD Title is "Beatles
 Greatest Hits"
Verify that the Rental Charge Return Date is "1/8/10
 8:00 AM"

 Verify that the Rental Charge Fee is "$10.00"

Category-Based Rental Fees

** Settings **
Resource _keywords/fee_structures.txt

** Test Cases **
Add Fee Structure Categories
Category Rental Base Extra
 Days Rental Fee Day Rental Fee
 Add Category NewRelease 1 2.00 2.00
 Add Category GoldenOldie 3 1.00 0.50
 Add Category Regular 2 1.50 1.00
 Add Category NotSet 2 1.00 1.00

Verify Rental Fees
Category Rental Days Total Rental Fee
 Verify Fee NewRelease 5 $10.00
 Verify Fee GoldenOldie 3 $1.00
 Verify Fee Regular 3 $2.50

Cucumber

Here is the Cucumber version created by John Goodsen.

Wow! eBook <WoweBook.Com>

ptg

Cucumber 297

Check-Out CD

Scenario: Two-Dollar Rental for 5 Days

 Given I am "James"
And the CD "Beatles Greatest Hits" with status "Not
 Rented"

 When I rent the CD "Beatles Greatest Hits"
 Then the rented CD status is "Rented"
 And the rented CD Checkout time is NOW
 And the CD rental contract has customer data for "James"

And the CD rental contract has rental data for "Beatles
 Greatest Hits"

Check-In CD

The previous scenario continues here:

When I come back "5 days" later
 And I return the CD "Beatles Greatest Hits"
 Then the rented CD status is "Not Rented"
 And the rental charge is $10

Category-Based Rental Fees

Scenario Outline: Category Based Rentals

 Given the following Category fee schedule:
 | Category | Rental Days | Base Fee | Extra Day Fee |
 | NewRelease | 1 | $2.00 | $2.00 |
 | GoldenOldie | 1 | $1.00 | $0.50 |
 | Regular | 1 | $1.50 | $1.00 |
 | Not Set | 1 | $1.00 | $2.00 |

 When I rent a CD from the <category> for <n-days>
 Then the bill will reflect the correct rental <fee>

 Examples:
 | category | n-days | fee |
 | NewRelease | 5 | $10.00 |
 | GoldenOldie | 3 | $1.00 |
 | Regular | 3 | $2.50 |

Wow! eBook <WoweBook.Com>

ptg

Appendix C Test Framework Examples298

Test Frameworks

To get more information about these and other common test frameworks,
Table C.1 provides links. You can find other frameworks and tools at www.
opensourcetesting.org/functional.php.

Table C.1 Some Acceptance Test Frameworks and Associated Links

Framework Website

JBehave http://jbehave.org/

Fit http://fit.c2.com/

FitNesse http://fitnesse.org/

Easyb http://www.easyb.org/

Cucumber http://cukes.info

Robot http://code.google.com/p/robotframework/

Arbiter http://arbiter.sourceforge.net/

Concordian http://www.concordion.org/

Selenium http://seleniumhq.org

Watir http://watir.com/

Summary

• Tests can be implemented in a number of frameworks.

Wow! eBook <WoweBook.Com>

www.opensourcetesting.org/functional.php
www.opensourcetesting.org/functional.php
http://jbehave.org/
http://fit.c2.com/
http://fitnesse.org/
http://www.easyb.org/
http://cukes.info
http://code.google.com/p/robotframework/
http://arbiter.sourceforge.net/
http://www.concordion.org/
http://seleniumhq.org
http://watir.com/

ptg

Appendix D

Tables Everywhere

“It is tempting, if the only tool you have is a hammer, to treat everything
as if it were a nail.”

Abraham Maslow

“Everywhere around the world
There’ll be dancing
They’re dancing in the streets”

Marvin Gaye, William Stevenson, and Ivy Hunter

Tables can be used to drive manual acceptance tests and to clarify not just func-
tional requirements, but quality attribute requirements.

User Interface Tests with Tables

In Chapter 4, “An Introductory Acceptance Test,” Debbie and Tom presented
the test cases used for a discount business rule. The cases were as follows.

Discount Calculation

Item Total Customer Rating Discount Percentage?

$10.00 Good 0%

$10.01 Good 1%

$50.01 Good 1%

$.01 Excellent 1%

$50.00 Excellent 1%

$50.01 Excellent 5%

299

Wow! eBook <WoweBook.Com>

ptg

Appendix D Tables Everywhere300

Compute Discount Amount

Given these items:

Items for Sale

Item Number Cost

I1 $10.00

I2 $10.01

I3 $50.01

I4 $.01

I5 $50.00

I6 $50.01

And these customers:

Customers

Name Rating Password

George Good 12345678

Edward Excellent 11111111

When a customer logs on:

Logon

Enter Name George

Enter Password 12345678

Press Submit

And adds an item to the shopping cart:

Add Item

Enter Item Number I1

Press Add

That chapter presented several ways to execute the test. One way was to use
a test script for the user interface. No test script was presented in that chapter.
You could express the test script with tables that give the information needed to
run the test. For example, the following tables have the setup necessary for all
the test cases and an example of the table flow for the first test case.

Wow! eBook <WoweBook.Com>

ptg

Requirement Tables 301

The setup for this test could be part of a standard setup for all the tests for
the system. It would usually not go through the user interface but be a program-
matic setup, as shown in Chapter 31, “Test Setup.”

You could execute this test manually or automatically. When driven manu-
ally, the tester should be able to determine from the screens how to enter the
information in this table. If not, the user interface probably has issues.

As an automatic test, each table could be associated with a script that drives
the corresponding user interface screen. These scripts could then be reused in
other tests that employ the same tables with the same or different data.

Requirement Tables

The original requirement for the discount was expressed in textual form. The
requirement itself could be put into a table for clarification [Parnas01]. Here
was the original discount business rule:

If Customer Type is Good and Item Total is less than or equal to $10.00,

Then do not give a discount,

Otherwise, give a 1% discount.

If Customer Type is Excellent,

Then give a discount of 1% for any order.

If Item Total is greater than $50.00,

Then give a discount of 5%.

And checks out:

Check-Out

Press Check-Out

Then the discount on the order should match the percentage in the Dis-
count table.

Order

Item Total Discount? Discount Percentage? (Discount/Item Total)

$10.00 $0.0 0%

Wow! eBook <WoweBook.Com>

ptg

Appendix D Tables Everywhere302

In table format, this rule could look like one of the following tables. The form
of the table should be whatever is appropriate to the problem, as discussed in
Chapter 21, “Test Presentation.”

Discount Rule

Type Item Total Discount Percentage

Good <= $10.00 0%

Good Otherwise 1%

Excellent Any 1%

Excellent > $50.00 5%

Or it might be like this.

Discount Rule

Type Item Total Discount Percentage

Good <= $10.00 0%

Otherwise 1%

Excellent Any 1%

> $50.00 5%

The table format clarifies what was potentially unclear or ambiguous in the
text. For example, the “any” of the original text statement appears more unclear
when it is placed in this table. In addition, filling out the tables may bring to light
suppressed premises, unstated requirements, or assumptions. In this example,
having a column for Type may suggest that there are other types for which the
discount rule may be applicable. For example, is there a regular customer who
is neither good nor excellent? If so, there needs to be another entry, such as this
one.

Type Item Total Discount Percentage

Regular < $1,000 0%

Otherwise 1%

Another Table

To be complete, the discount percentage example assumes that a customer has a
rating of Good or Excellent without specifying how that rating was arrived at.
The separation of concerns of what discount to apply from the determination of
the customer type makes the tests for both more robust.

Wow! eBook <WoweBook.Com>

ptg

Quality Attribute Requirements 303

 Similar to what was done in Chapter 13, “Simplification by Separation,” here
is a business rule for determining the customer rating.

Customer Rating Rule

Total of Orders Customer Rating

<= $1,000 Regular

>$1,000 Good

> $5,000 Excellent

When rules are expressed as tables, making up the tests often is straightfor-
ward. In this example, you simply create tests at each of the transition points
between each rating.

Customer

Total of Orders Customer Rating?

$1,000 Regular

$1,000.01 Good

$5,000 Good

$5,000.01 Excellent

Now you need a test that shows that the Total of Orders for a particular cus-
tomer is correct. Creating tables showing a set of orders for customers that total
up to the amounts in this table is left as an exercise for the reader.

Quality Attribute Requirements

You can use tables to indicate the required quality attribute measures that an
application must meet. For example, in Chapter 12, “Development Review,”
Tom showed a table for performance of check-outs.

Check-Out Performance

Number of Simultaneous Check-Outs Response Time Maximum (Seconds)

1 .1

10 .2

100 .3

Wow! eBook <WoweBook.Com>

ptg

Appendix D Tables Everywhere304

If platform capacity was a constraint, the triad could create a resource table,
such as this one.

Maximum Resources

Number of Users Memory in Megabytes
CPU Cycles in Million of
Instructions Per Second

1 10 1

10 30 5

100 50 20

Data Tables

Can you use the customer tables as the data? Sure. You need to have a transla-
tion mechanism, but that’s fairly simple. For example, Chapter 10, “User Story
Breakup,” had a table for rental rates.

Rental Rates

CD Category Rental Period Days Rental Rate Extra Day Rate

Regular 2 $2 $1

GoldenOldie 3 $1 $.50

HotStuff 1 $4 $6

This table could be the actual source for the rates. The program would read
this table and use the values as the rates. If Sam wants to change the rates, he
just changes this table and tells the program to reread it.

Summary

• You can use tables to drive user interface tests manually or automatically.

• Use tables for requirements for clarification and to expose unexpressed
details.

Wow! eBook <WoweBook.Com>

ptg

Appendix E

Money with ATDD

“Money frees you from doing things you dislike. Since I dislike doing
nearly everything, money is handy.”

Groucho Marx

Developers who have been exposed to test-driven development (TDD) often
come across the money problem. This problem was introduced in Kent Beck’s
book, Test-Driven Development by Example [Beck01]. An example with unit
tests accompanies many of the xUnit frameworks.

The Context

An organization owns shares of stocks in different companies, and the shares are
valued in different currencies. You want to add up the money in different cur-
rencies and convert it to a total in a given currency. An example of this follows,
where CHF are Swiss francs.

Total Share Value

Shares Value Per Share Total Value

100 1 USD 100 USD

50 2 CHF 100 CHF

150 USD If 2 CHF = 1 USD

305

Wow! eBook <WoweBook.Com>

ptg

Appendix E Money with ATDD306

The Original Tests

Kent Beck’s book showed how to develop the code using a test-driven approach.
The tests he created using JUnit could be expressed in tables. The first table is
for currency conversion and demonstrates how Swiss francs are converted in
U.S. dollars.

Currency Conversion

From Currency To Currency Rate

CHF USD 2

This table is the setup for the remaining tests. Given this table, we need to be
sure that we understand how to apply the rate. Do you multiply or divide Swiss
francs by 2 to get U.S. dollars? Here’s an example table for that.

Conversion

From Amount To Amount?

10 CHF 5 USD

You need to multiply an amount by the number of shares. The tests for this
multiplication operation are expressed in the following table.

Currency Multiplication

Amount Multiplier Product?

5 USD 2 10 USD

5 CHF 2 10 CHF

Finally, you need to add two values that may be in different currencies. There
are four possibilities, and this table expresses two of them. Note that the sum is
always expressed in USD.

Currency Addition

Amount One Amount Two Sum?

5 USD 5 USD 10 USD

5 USD 10 CHF 10 USD

The preceding two tests demonstrate our understanding of how addi-
tion should work. The sums in the first two cases resulted in USD. Two more

Wow! eBook <WoweBook.Com>

ptg

The Acceptance Test Approach 307

tests, which were not in Kent’s book, may help in further understanding of the
addition issue.

Currency Addition

Amount One Amount Two Sum?

5 CHF 5 CHF 10 CHF ??

10 CHF 5 USD 10 USD ??

Should the sum of two amounts in Swiss francs result in Swiss francs or U.S.
dollars? Should the sum always represent USD, or should it reflect the currency
of the first amount? The sums in this table are shown with ?? to reflect that the
answers are uncertain and need further definition.

Now we can express the desired calculation in a table. The Accumulated
Value is the sum of the Total Values of the current and preceding rows. 1

Total Share Value

Shares Value Per Share Total Value Accumulated Value?

100 1 USD 100 USD 100 USD

50 2 CHF 100 CHF 150 USD

These tables do not drive the details of the underlying implementation. That’s
what the steps in test-driven design do. These tables were derived from the JUnit
tests to demonstrate to the customer how the conversion works. Let’s next
approach this from the opposite direction.

The Acceptance Test Approach

Acceptance tests do not indicate how to design a solution. Rather, they are a
communication mechanism between the customer, developer, and tester. Let’s
start by stating the problem as a user story: “As an accountant, I need to convert
amounts that are in different currencies to a total in a common currency.” The
role of the accountant is the customer with whom we can collaborate in devel-
oping acceptance tests.

Our initial collaboration reveals that currencies are converted into other cur-
rencies by applying exchange rates. These exchange rates are time dependent,
so we need a context for the conversion. In the context of accounting, the user
says that the exchange rates for this conversion will be fixed at an instance of

 1. This table has a second row with values that do not appear in the original tests.

Wow! eBook <WoweBook.Com>

ptg

Appendix E Money with ATDD308

time. He wants all conversions in the reports he is preparing to use the same
exchange rates. These rates will be those as of midnight on the day prior to the
report being prepared.

Decoupling the issue of conversion from the issue of time-dependent
exchange rates allows for easier testing. We can create a separate set of tests for
the exchange rates.

We start by making up an exchange rate table. The values in the table are
representative of the actual conversion rates. In real life, the conversions may
use more digits after the decimal places. They are shown with two decimal digits
to keep the example simple.

Conversion Rates

Currency To/
Currency From EUR USD CHF

EUR 1.0 1.51 .91

USD .67 1.0 .73

CHF 1.1 1.35 1.0

Here are examples of how to convert from one currency to another.

Currency Conversion

Input Convert to Currency Converted Amount

5 EUR USD 7.55 USD

7.55 USD EUR 5.06 EUR ??

The accountant came up with the first example to show what he meant by
conversion. The developer created the second example. It shows that the reverse
conversion produces a different value than the original conversion. This incon-
sistency causes a discussion, because the conversion is not symmetric. Is that
what is desired? Should there be separate exchange rates for USD to EUR and
EUR to USD? Or should one rate be just the inverse of the other rate? Will the
non-symmetry cause problems? It’s time for clarification. This is a fundamental
issue in the conversion that can affect the rest of the situation. Let’s assume
that the accountant decided that the conversion should be symmetric, so we’ll
rewrite the setup and the tests.

Wow! eBook <WoweBook.Com>

ptg

The Acceptance Test Approach 309

Conversion Rates

Currency To/Currency From EUR USD CHF

EUR 1.0 1.51 .91

USD X 1.0 .73

CHF X X 1.0

Here are the corresponding examples.

Currency Conversion

Input Convert to Currency Converted Amount?

5 EUR USD 7.55 USD

7.55 USD EUR 5 EUR

The tester suggests a few more examples that come to mind, all dealing with
precision. When converting from USD to EUR, the result turns out to have a
large number of digits after the decimal point. The ... shows that the digits do
not just stop at 2. What should be done with these digits?

Currency Conversion

Input Convert to Currency Converted Amount?

5.01 EUR USD 7.5651 USD ??

7.57 USD EUR 5.0132... EUR??

These examples bring up a discussion of round-off. How should round-off be
handled? Should it be tracked by putting the round-off into a separate account
(such as the developer’s 401K plan)? Should it be accounted for by some report
output? Should the amounts be rounded up or rounded down? Or is the direc-
tion of rounding based on certain conditions? There are certain decisions that
can be delayed, such as what to do with the round-off. The tests for now can at
least ensure that round-off is calculated properly.

Currency Conversion Round-Off

Input Convert to Currency Converted Amount? Round-Off?

5.01 EUR USD 7.57 USD .0049 USD

7.57 USD EUR 5.01 EUR –.32... EUR

Next to be developed were a few examples of conversion for multiple curren-
cies. The examples looked like this.

Wow! eBook <WoweBook.Com>

ptg

Appendix E Money with ATDD310

Currency Conversion with Round-Off

Input
Convert to
Currency

Converted
Amount? Round-Off?

5 EUR + 10 USD USD 17.55 USD .0 USD

5 EUR + 7.57 USD EUR 10.01 EUR –.32... EUR

5.01 EUR + 5.01 EUR USD 15.14 USD ?? .0098 USD ??

The accountant gave the first two examples. The developer wrote the last
one. It demonstrates an outstanding issue. Should the amounts be individually
converted, or should amounts be totaled before conversion? If the former, the
values in the table are correct. If the latter, the table should be corrected to be
as follows.

Input Convert to Currency Converted Amount? Round-Off?

5.01 EUR + 5.01 EUR USD 15.13 USD .0002 USD

The tester comes up with one more example. This one asks the question of
how to handle the round-offs between two currencies. Should the converted val-
ues be added prior to round-off or afterward? This test needs a second example
to show that the underlying implementation does things correctly.

Input Convert to Currency Converted Amount? Round-Off?

5.01 EUR + 5.01 CHF USD 14.42 USD .0019...
USD

Now the developer understands the overall picture of the problem. She can
pick one of the acceptance tests and use that as the starting point for a test-
driven design. Unit tests, some of which may be derived from these examples,
can check that the classes and methods are giving the desired behavior, such as
the round-off. Passing these acceptance tests demonstrates to the accountant
that the conversion module as a whole performs as desired.

Summary

• You can use acceptance tests to derive unit tests.

Wow! eBook <WoweBook.Com>

ptg

Appendix F

Exercises

“Arithmetic is where the answer is right and everything is nice and you can
look out of the window and see the blue sky—or the answer is wrong and
you have to start over and try again and see how it comes out this time.”

Carl Sandburg

“You can’t become a snowboarder by just reading about it.”

Anonymous

To round out the exercises that are suggested throughout this book, here are
some additional exercises for you. The calculator test exercise gives you an op-
portunity to create acceptance tests for an existing system and then use these
tests as the basis for creating a new implementation of that system. The other
exercises are to create detailed requirements and acceptance tests.

Calculator

Almost everyone has used a calculator. In some elementary schools, students are
required to demonstrate proficiency with one. The type of calculator for which
the tests are being written is a simple one with a single memory for a number,
such as the one available on the Windows operating system (see Figure F.1).

311

Wow! eBook <WoweBook.Com>

ptg

Appendix F Exercises312

Figure F.1 Calculator

The table could specify a single input key, with the conditions of the previous
step. Note that MS is “memory save” and MR is “memory recall.”

Calculator

Current New

Memory Display Input Key Display? Memory?

2 2

2 + 2

2 3 3

3 1 31

31 = 33

MS 33 33

Alternatively, the table could state the sequence of steps.

Calculator

Input Display? Memory?

2 + 31 = 33

2 + 31 = MS 33 33

For the memory save and recall, you could create even more tests.

Calculator

Memory Input Display? Memory?

NA 2 + 3 = 5

NA 2 + 3 = MS 5 5

5 2 + MR = 7 5

Wow! eBook <WoweBook.Com>

ptg

More Exercises 313

Now you apply a number of inputs to see what the results might be, such as
the following.

Calculator

Memory Input Display? Memory?

NA 2 + + 3 = 5

NA 2 + – 3 = -1

NA 2 – – 3 = ???

NA 2 / – 3 = ???

Create Some Tests

Because you have an existing application (a calculator), check the results of
these inputs on that application. The 2 – – 3 test could produce –1 or 5, depend-
ing on how your existing calculator works. Change the results in the examples
to match that calculator. Now give the examples to a developer, and have him
create a program that passes these acceptance tests. Do you need a user inter-
face? How much effort would it be to run the tests with a user interface than
without one?

If the developer feels that the program is too large to complete easily, you can
break up the acceptance tests. One way to do that is to separate tests involving
the memory from the other tests. The memory is a separable feature. Another
way is to have tests that specify only series of input that are “normal.” That is,
you would leave out sequences that had two symbols immediately following
each other, such as “/–”.

After the developer creates a program that passes the test as originally speci-
fied, change the result so that the other answer is expected. The acceptance test
should fail. The developer now needs to alter the program to create the expected
result. When the developer does so, do any other tests fail? Do you have redun-
dant tests? Are all tests consistent?

More Exercises

Here are some other exercises. Create detailed requirements and the correspond-
ing acceptance tests for each. Answers will be posted on atdd.biz.

Wow! eBook <WoweBook.Com>

ptg

Appendix F Exercises314

Sam’s CD Rental

As the inventory manager, I want to get a list of all rentals for a CD so I can see
whether it is popular.

As the owner, I want to see a record of all activities, such as when CDs are
checked-out and checked-in. This helps me determine whether I need to hire
more staff.

As an auditor, I need to be able to keep track of all money transfers for Sam’s
CD Rental.

As a customer, I want to search for CDs by title, artist, or song.
As a customer, I also want to search for songs whose lengths fall between a

minimum and maximum length expressed in seconds.

Triangle

A program inputs three values representing the lengths of the sides of a triangle.
The program is to determine whether the triangle is scalene, isosceles, or equi-
lateral [Myers01].

File Copying Exercise

A module is being written for an operating system to copy a file from one direc-
tory to another. The desired user interface follows.

For example:

copy some_directory another_directory a_file

The happy path includes the conditions where some_directory and another_
directory exist and a_file exists in some_directory. There are many other condi-
tions, such as another_directory does not exist.

List these conditions and create other cases.

Wow! eBook <WoweBook.Com>

ptg

References

“And now for the rest of the story.”
Paul Harvey

Referenced

The following books and websites were referenced in this book.

[AAA01] http://www.arrangeactassert.com/why-and-what-is-arrange-act-
assert/.

[ABA01] http://www.abajournal.com/news/article/judge_calls_for_end_to_
lawyers_obfuscation_suits_madness/.

[Adzic01] Adzic, Gojko. Bridging the Communication Gap: Specification by
Example and Agile Acceptance Testing. Neuri Limited, 2009.

[Adzic02] Adzic, Gojko. Test Driven .NET Development with FitNesse. Neuri
Limited, 2008. Available at http://fitnesse.s3.amazonaws.com/tdd_net_
with_fitnesse.pdf .

[Agile01] http://agilemanifesto.org/principles.html.
[Alexander01] Alexander, Christopher, Sara Ishikawa, and Murray Silverstein.

A Pattern Language: Towns, Buildings, Construction. Oxford University
Press, 1977.

[Ambler01] Ambler, Scott W. Agile Modeling: Effective Practices for eXtreme
Programming and the Unified Process. Wiley, 2002.

[Anderson01] Anderson, David J. Kanban. Blue Hole Press, 2010.
[Answers01] http://www.answers.com/topic/acceptance-test.
[Answers02] http://www.answers.com/topic/system-test.
[Aston01] Meszaros, Gerard, and Janice Aston. “Adding Usability Testing to

an Agile Project.” Agile Conference, 2006.
[Bach01] Bach, James. “Exploratory Testing Explained”. http://www.satisfice.

com/articles/et-article.pdf.
[Beck01] Beck, Kent. Test Driven Development: By Example. Addison-Wesley

Professional, 2002.

315

Wow! eBook <WoweBook.Com>

http://www.arrangeactassert.com/why-and-what-is-arrange-actassert/
http://www.arrangeactassert.com/why-and-what-is-arrange-actassert/
http://www.abajournal.com/news/article/judge_calls_for_end_to_lawyers_obfuscation_suits_madness/
http://www.abajournal.com/news/article/judge_calls_for_end_to_lawyers_obfuscation_suits_madness/
http://www.answers.com/topic/acceptance-test
http://www.answers.com/topic/system-test
http://www.satisfice.com/articles/et-article.pdf
http://www.satisfice.com/articles/et-article.pdf
http://fitnesse.s3.amazonaws.com/tdd_net_with_fitnesse.pdf
http://fitnesse.s3.amazonaws.com/tdd_net_with_fitnesse.pdf
http://agilemanifesto.org/principles.html

ptg

References333111666

[Beust01] Beust, Cedric, and Hani Suleiman. Next Generation Java Testing:
TestNG and Advanced Concepts. Addison-Wesley Professional, 2007.

[Chelimsky01] Chelimsky, David, Dave Astels, Zach Dennis, Aslak Hellesøy,
Bryan Helmkamp, and Dan North. The RSpec Book: Behaviour Driven
Development with RSpec, Cucumber, and Friends. The Pragmatic
Bookshelf.

[Cimperman01] Cimperman, Rob. UAT Defined: A Guide to Practical User
Acceptance Testing. Addison-Wesley Professional, 2006.

[Cockburn01] Cockburn, Alistair. Agile Software Development: The
Cooperative Game. Addison-Wesley Professional, 2006.

[Cockburn02] Cockburn, Alistair. Writing Effective Use Cases. Addison-
Wesley Professional, 2000.

[Cohn01] Cohn, Mike. Agile Estimating and Planning. Prentice Hall, 2005.
[Cohn02] Cohn, Mike. User Stories Applied: For Agile Software Development.

Addison-Wesley Professional, 2004.
[Constantine01] Constantine, Larry, and Lucy Lockwood. A.D. Software for

Use: A Practical Guide to the Models and Methods of Usage-Centered
Design. Addison-Wesley Professional, 1999.

[Constantine02] Stevens, W., G. Myers, and L. Constantine. “Structured
Design”. IBM Systems Journal, 13 (2), 115–139, 1974.

[Cooper01] Cooper, Alan. The Inmates Are Running the Asylum: Why High
Tech Products Drive Us Crazy and How to Restore the Sanity. Sams,
2004.

[Coplien01] Bjørnvig, Gertrud, James Coplien, and Neil Harrison. “A Story
about User Stories and Test-Driven Development”. Better Software 9(11),
November 2007, ff. 34. http://www.rbcs-us.com/images/documents/User-
Stories-and-Test-Driven-Development.pdf.

[Craig01] Mackinnon, Tim, Steve Freeman, and Philip Craig. “EndoTesting:
Unit Testing with Mock Objects”. http://www.mockobjects.com/files/
endotesting.pdf.

[Crispin01] http://lisacrispin.com/wordpress/tag/power-of-three/.
[Crispin02] Crispin, Lisa, and Janet Gregory. Agile Testing: A Practical Guide

for Testers and Agile Teams. Addison-Wesley Professional, 2009.
[Cunningham01] Mugridge, R., and W. Cunningham. Fit for Developing

Software: Framework for Integrated Tests. Prentice Hall PTR, 2005.
[Cunningham02] http://fit.c2.com/wiki.cgi?FrameworkHistory .
[Cunningham03] http://c2.com/wikisym2007/pnsqc2007.pdf.
[Decision01] http://www.decisionanalyticsblog.experian.com/blog/

collections/0/0/championchallenger-collections-strategy-testing.
[Devx01] http://www.devx.com/vmspecialreport/Article/30410.
[DrDobbs01] http://www.drdobbs.com/architecture-and-design/

187900423;?pgno=3.

Wow! eBook <WoweBook.Com>

http://www.rbcs-us.com/images/documents/User-Stories-and-Test-Driven-Development.pdf
http://www.rbcs-us.com/images/documents/User-Stories-and-Test-Driven-Development.pdf
http://www.mockobjects.com/files/endotesting.pdf
http://www.mockobjects.com/files/endotesting.pdf
http://www.decisionanalyticsblog.experian.com/blog/collections/0/0/championchallenger-collections-strategy-testing
http://www.decisionanalyticsblog.experian.com/blog/collections/0/0/championchallenger-collections-strategy-testing
http://www.devx.com/vmspecialreport/Article/30410
http://www.drdobbs.com/architecture-and-design/187900423;?pgno=3
http://www.drdobbs.com/architecture-and-design/187900423;?pgno=3
http://fit.c2.com/wiki.cgi?FrameworkHistory
http://c2.com/wikisym2007/pnsqc2007.pdf
http://lisacrispin.com/wordpress/tag/power-of-three/

ptg

Referenced 317

[EATDD01] http://ase.cpsc.ucalgary.ca/index.php/EATDD/Home.
[Eckstein01] Eckstein, Jutta. Agile Software Development with Distributed

Teams: Staying Agile in a Global World. Dorset House Publishing
Company, Incorporated, 2010.

[Evans01] Evans, Eric. Domain-Driven Design: Tackling Complexity in the
Heart of Software. Addison-Wesley Professional, 2003.

[Fast01] http://www.fastcompany.com/blog/charles-fishman/
usair-asks-fliers-%E2%80%98can-we-get-hallelujah%E2%80%99 .

[Faught01] http://sadekdrobi.com/.
[Feathers01] Feathers, Michael. Working Effectively with Legacy Code.

Prentice Hall, 2004.
[Fowler01] Fowler, Martin. UML Distilled: A Brief Guide to the Standard

Object Modeling Language. Addison-Wesley Professional, 2003.
[Gottesdiener01] Gottesdiener, Ellen. Requirements by Collaboration:

Workshops for Defining Needs. Addison-Wesley Professional, 2002.
[Gottesdiener02] http://ebgconsulting.com/articles.php#wkshp.
[Gottesdiener03] http://ebgconsulting.com/facassets.php.
[Hillside01] http://www.hillside.net/plop/plop2003/Papers/Brown-mock-

objects.pdf.
[Hunt01] Hunt, Andrew, and Dave Thomas. The Pragmatic Programmer:

From Journeyman to Master. Addison-Wesley Professional, 1999.
[Hussman01] Hussman, David. Practical Agility. The Pragmatic Bookshelf (in

production 2010).
[IBM01] http://publib.boulder.ibm.com/infocenter/rbhelp/v6r3/index.

jsp?topic=/com.ibm.redbrick.doc6.3/wag/wag29.htm.
[IBM02] http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.

jsp?topic=/rzahw/rzahwdetco.htm.
[IEFF01] http://www.ietf.org/rfc/rfc2822.txt.
[III01] http://www.drdobbs.com/architecture-and-de-sign/184414956.
[Isolum01] http://lsolum.typepad.com/copyfutures/2004/10/a_lesson_from_

j.html.
[Jefferies01] http://xprogramming.com/articles/

expcardconversationconfirmation/ .
[Kaner01] Kaner, Cem, Jack Falk, and Hung Q. Nguyen. Testing Computer

Software. Wiley, 1999.
[Kerievsky01] http://industriallogic.com/papers/storytest.pdf.
[Koskela01] http://www.methodsandtools.com/archive/archive.php?id=72.
[Koskela02] Koskela, Lasse. Test Driven: TDD and Acceptance TDD for Java

Developers. Manning Publications, 2007.
[Larman01] Larman, Craig, and Bas Vodde. Scaling Lean & Agile

Development: Thinking and Organizational Tools for Large-Scale Scrum.
Addison-Wesley Professional, 2008.

Wow! eBook <WoweBook.Com>

http://www.fastcompany.com/blog/charles-fishman/usair-asks-fliers-%E2%80%98%can-we-get-hallelujah%E2%80%99
http://www.fastcompany.com/blog/charles-fishman/usair-asks-fliers-%E2%80%98%can-we-get-hallelujah%E2%80%99
http://www.hillside.net/plop/plop2003/Papers/Brown-mock-objects.pdf
http://www.hillside.net/plop/plop2003/Papers/Brown-mock-objects.pdf
http://www.ietf.org/rfc/rfc2822.txt
http://www.drdobbs.com/architecture-and-de-sign/184414956
http://lsolum.typepad.com/copyfutures/2004/10/a_lesson_from_j.html
http://lsolum.typepad.com/copyfutures/2004/10/a_lesson_from_j.html
http://xprogramming.com/articles/
http://publib.boulder.ibm.com/infocenter/rbhelp/v6r3/index.jsp?topic=/com.ibm.redbrick.doc6.3/wag/wag29.htm
http://publib.boulder.ibm.com/infocenter/rbhelp/v6r3/index.jsp?topic=/com.ibm.redbrick.doc6.3/wag/wag29.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=/rzahw/rzahwdetco.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=/rzahw/rzahwdetco.htm
http://industriallogic.com/papers/storytest.pdf
http://www.methodsandtools.com/archive/archive.php?id=72
http://ase.cpsc.ucalgary.ca/index.php/EATDD/Home
http://sadekdrobi.com/
http://ebgconsulting.com/articles.php#wkshp
http://ebgconsulting.com/facassets.php

ptg

References318

[Larman02] Larman, Craig, and Bas Vodde. Practices for Scaling Lean &
Agile Development: Large, Multisite, and Offshore Product Development
with Large-Scale Scrum. Addison-Wesley Professional, 2010.

[Marick01] http://www.exampler.com/.
[Martin01] http://fitnesse.org .
[Martin02] http://butunclebob.com/FitNesse.UserGuide.FitLibraryUserGuide.

DoFixture.
[Martin03] http://fitnesse.org/FitNesse.UserGuide.SliM .
[Melnik01] Martin, Robert C., and Grigori Melnik. “Tests and Requirements,

Requirements and Tests: A Möbius Strip”. IEEE_Software Vol. 25, No.
1. January/February 2008, at http://www.gmelnik.com/papers/IEEE_
Software_Moebius_GMelnik_RMartin.pdf.

[Melnik02] Melnik, G., F. Maurer, and M. Chiasson. “Executable Acceptance
Tests for Communicating Business Requirements: Customer Perspective”.
Agile Conference, 2006.

[Melnik03] Melnik, Grigori, and Frank Maurer. “Multiple Perspectives
on Executable Acceptance Test-Driven Development”. http://www.
springerlink.com/content/34w2q2561k471175/.

[Meszaros01] Meszaros, Gerard. xUnit Test Patterns: Refactoring Test Code.
Addison-Wesley, 2007.

[Meszaros02] Melnik, Grigori, Jon Bach, and Gerard Meszaros. “Acceptance
Test Engineering Guide, Vol. I”. http://testingguidance.codeplex.com.

[Mindtools01] http://www.mindtools.com/CommSkll/ActiveListening.htm.
[Myers01] Myers, Glenford J. The Art of Software Testing. Wiley, 2004.
[Nielsen01] Nielsen, Jakob. Usability Engineering. Morgan Kaufmann, 1993.
[OSHA01] http://www.osha.gov/dts/osta/otm/noise/health_effects/physics.html.
[Parnas01] http://www.cs.iastate.edu/~colloq/new/David_Parnas_slides.pdf.
[Patton01] http://www.agileproductdesign.com/presentations/user_story_

mapping/index.html.
[Pettichord01] Kaner, Clem, James Bach, and Bret Pettichord. Lessons Learned

in Software Testing. Wiley, 2001.
[Pichler01] Pichler, Roman. Agile Product Management with Scrum: Creating

Products that Customers Love. Addison-Wesley Professional, 2010.
[Poppendieck01] http://www.poppendieck.com/design.htm.
[Poppendieck02] Poppendieck, Mary, and Tom Poppendieck. Implementing

Lean Software Development: From Concept to Cash. Addison-Wesley
Professional, 2006.

[Poppendieck03] http://www.poppendieck.com/papers/LeanThinking.pdf.
[Poppendieck04] http://www.poppendieck.com/pdfs/Lean_Software_

Development.pdf.
[Project01] http://www.projectsmart.co.uk/smart-goals.html.
[Pugh01] Pugh, Ken. Interface-Oriented Design. Pragmatic Bookshelf, 2006.

Wow! eBook <WoweBook.Com>

http://www.exampler.com/
http://fitnesse.org
http://butunclebob.com/FitNesse.UserGuide.FitLibraryUserGuide.DoFixture
http://butunclebob.com/FitNesse.UserGuide.FitLibraryUserGuide.DoFixture
http://www.gmelnik.com/papers/IEEE_Software_Moebius_GMelnik_RMartin.pdf
http://www.gmelnik.com/papers/IEEE_Software_Moebius_GMelnik_RMartin.pdf
http://www.springerlink.com/content/34w2q2561k471175/
http://www.springerlink.com/content/34w2q2561k471175/
http://www.mindtools.com/CommSkll/ActiveListening.htm
http://www.osha.gov/dts/osta/otm/noise/health_effects/physics.html
http://www.cs.iastate.edu/~colloq/new/David_Parnas_slides.pdf
http://www.agileproductdesign.com/presentations/user_story_mapping/index.html
http://www.agileproductdesign.com/presentations/user_story_mapping/index.html
http://www.poppendieck.com/design.htm
http://www.poppendieck.com/papers/LeanThinking.pdf
http://www.poppendieck.com/pdfs/Lean_Software_Development.pdf
http://www.poppendieck.com/pdfs/Lean_Software_Development.pdf
http://www.projectsmart.co.uk/smart-goals.html
http://fitnesse.org/FitNesse.UserGuide.SliM
http://testingguidance.codeplex.com

ptg

Referenced 319

[Pugh02] Pugh, Ken. Prefactoring—Extreme Abstraction, Extreme Separation,
Extreme Readability. O’Reilly Media, 2005.

[Reinertsen01] Reinertsen, Donald G. The Principles of Product Development
Flow: Second Generation Lean Product Development. Celeritas
Publishing, 2009.

[Riordan01] Riordan, Rebecca M. Heads First Ajax. O’Reilly Media, 2008
[Rising01] Manns, Mary Lynn, and Linda Rising. Fearless Change: Patterns

for Introducing New Ideas. Addison-Wesley Professional, 2008.
[Rup01] http://rup.hops-fp6.org/process/artifact/ar_tstatmarc.htm.
[Satir01] http://www.satirworkshops.com/files/satirchangemodel.pdf .
[Security01] https://www.pcisecuritystandards.org/security_standards/

pci_dss.shtml.
[Security02] http://www.securiteam.com/securityreviews/5DP0N1P76E.html.
[Shalloway01] Shalloway, Alan, James R. Trott, and Guy Beaver. Lean-Agile

Software Development: Achieving Enterprise Agility. Addison-Wesley
Professional, 2009.

[Sutherland01] http://jeffsutherland.com/
JakobsenScrumCMMIGoingfromGoodtoGreatAgile2009.pdf.

[Systems01] http://www.systems-thinking.org/rca/rootca.htm.
[Tabaka01] Tabaka, Jean. Collaboration Explained: Facilitation Skills for

Software Project Leaders. Addison-Wesley Professional, 2006.
[Tavares01] http://www.tavaresstudios.com.
[Usability01] http://www.usabilitynet.org/trump/documents/Suschapt.doc.
[Vinoleo01] http://vinoleoinc.com/Documents/How%20to%20create%20

your%20Project%20Charter.pdf.
[Wake02] http://xp123.com/xplor/xp0308/.
[Weinberg01] Gause, Donald C., and Gerald M. Weinberg. Exploring

Requirements: Quality Before Design. Dorset House Publishing Company,
1989.

[Whittaker01] Whittaker, James A. Exploratory Software Testing: Tips,
Tricks, Tours, and Techniques to Guide Test Design. Addison-Wesley
Professional.

[Wiegers03] Wiegers, Karl. Practical Project Initiation: A Handbook with
Tools. Microsoft Press, 2007.

[Wiegers04] http://www.projectinitiation.com/process_assets/Project%20
Charter%20Template.doc.

[Wiki01] http://en.wikipedia.org/wiki/N-body_problem.
[Wiki02] http://en.wikipedia.org/wiki/Four_color_theorem.
[Wiki03] http://en.wikipedia.org/wiki/Software_architect.
[Wiki04] http://en.wikipedia.org/wiki/Smoke_test.
[Wiki05] http://en.wikipedia.org/wiki/Myers-Briggs_Type_Indicator.
[Wiki06] http://en.wikipedia.org/wiki/Unified_Modeling_Language .

Wow! eBook <WoweBook.Com>

http://rup.hops-fp6.org/process/artifact/ar_tstatmarc.htm
http://www.satirworkshops.com/files/satirchangemodel.pdf
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
http://www.securiteam.com/securityreviews/5DP0N1P76E.html
http://www.systems-thinking.org/rca/rootca.htm
http://www.tavaresstudios.com
http://www.usabilitynet.org/trump/documents/Suschapt.doc
http://www.projectinitiation.com/process_assets/Project%20Charter%20Template.doc
http://www.projectinitiation.com/process_assets/Project%20Charter%20Template.doc
http://en.wikipedia.org/wiki/N-body_problem
http://en.wikipedia.org/wiki/Four_color_theorem
http://en.wikipedia.org/wiki/Software_architect
http://en.wikipedia.org/wiki/Smoke_test
http://en.wikipedia.org/wiki/Myers-Briggs_Type_Indicator
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://jeffsutherland.com/
http://vinoleoinc.com/Documents/How%20to%20create%20your%20Project%20Charter.pdf
http://vinoleoinc.com/Documents/How%20to%20create%20your%20Project%20Charter.pdf
http://xp123.com/xplor/xp0308/

ptg

References320

[Wiki07] http://en.wikipedia.org/wiki/Root_cause_analysis.
[Wiki08] http://en.wikipedia.org/wiki/Sound_level_meter.
[Wiki09] http://en.wikipedia.org/wiki/Five_whys.
[Wiki10] http://en.wikipedia.org/wiki/Broken_windows_theory.

References

Following are other books involved with aspects and topics related to accept-
ance test-driven development, including requirements, testing, and process.

[Astels01] Astels, David. Test-Driven Development, A Practical Guide.
Prentice Hall, 2003.

[Bain01] Bain, Scott L. Emergent Design: The Evolutionary Nature of
Professional Software Development. Addison-Wesley Professional, 2008.

[Copeland01] Copeland, Lee. A Practitioner’s Guide to Software Test Design.
Artech House Publishers, 2004.

[Coplien02] Bjørnvig, Gertrud, James Coplien, and Neil Harrison. “Chapter 2:
A Story about User Stories and Test-Driven Development, into the Field.”
Better Software 9(12), December 2007, ff. 32.

[Coplien03] Coplien, James O., and Neil B. Harrison. Organizational Patterns
of Agile Software Development. Prentice Hall, 2004.

[Craig02] Craig, Rick, and Stefan P. Jaskiel. Systematic Software Testing.
Artech House, 2002.

[Demarco01] Demarco, Tom, Peter Hruschka, Tim Lister, and Suzanne
Robertson. Adrenaline Junkies and Template Zombies: Understanding
Patterns of Project Behavior. Dorset House, 2008.

[DeMarco02] DeMarco, Tom, and Timothy Lister. Waltzing with Bears:
Managing Risk on Software Projects. Dorset House Publishing Company,
Incorporated, 2003.

[Denne01] Denne, Mark, and Jane Cleland-Huang. Software by Numbers:
Low-Risk, High-Return Development. Prentice Hall, 2003.

[Elssamadisy01] Elssamadisy, Amr. Agile Adoption Patterns: A Roadmap to
Organizational Success. Addison-Wesley Professional, 2008.

[Elssamadisy02] Elssamadisy, Amr. “Test-Driven Requirements” Chapter
44 in Agile Adoption Patterns: A Roadmap to Organizational Success.
Addison-Wesley Professional, 2008.

[Fowler02] Fowler, Martin. Patterns of Enterprise Application Architecture.
Addison-Wesley Professional, 2002.

[Galen01] Galen, Robert. Software Endgames: Eliminating Defects,
Controlling Change, and the Countdown to On-Time Delivery. Dorset
House Publishing Company, Incorporated, 2004.

Wow! eBook <WoweBook.Com>

http://en.wikipedia.org/wiki/Root_cause_analysis
http://en.wikipedia.org/wiki/Sound_level_meter
http://en.wikipedia.org/wiki/Five_whys
http://en.wikipedia.org/wiki/Broken_windows_theory

ptg

References 321

[Graham01] Fewster, Mark, and Dorothy Graham. Software Test Automation.
Addison-Wesley, 1999.

[Graham02] Graham, Dorothy, Erik Van Veenendaal, Isabel Evans, and Rex
Black. Foundations of Software Testing. Cengage Learning, 2008.

[Grenning01] Grenning, James W. Test Driven Development for Embedded C.
Pragmatic Bookshelf, 2010.

[Highsmith01] Highsmith, Jim. Agile Software Development Ecosystems.
Addison-Wesley Professional, 2002.

[Hiranabe01] Hiranabe, Kenji. Kanban. “Applied to Software
Development: From Agile to Lean”. http://www.infoq.com/articles/
hiranabe-lean-agile-kanban.

[Janzen01] Janzen and Saledian. “Does Test-Driven Development Really
Improve Software Design Quality?” IEEE Software 25(2), March/April
2008, pp.77–84.

[Jefferies02] Jeffries, Ron. Extreme Programming Installed. Addison-Wesley
Professional, 2000.

[Kerievsky02] Kerievsky, Joshua. Refactoring to Patterns. Addison-Wesley
Professional, 2004.

[Kerth01] Kerth, Norman L. Project Retrospectives: A Handbook for Team
Reviews, Dorset House Publishing Company, 2001.

[Ladas01] Ladas, Corey. Scrumban—Essays on Kanban Systems for Lean
Software Development. Modus Cooperandi Press, 2009.

[Marick02] Marick, Brian. The Craft of Software Testing: Subsystems Testing
Including Object-Based and Object-Oriented Testing, Prentice Hall, 1994.

[Osherove01] Osherove, Roy. The Art of Unit Testing: With Examples in .Net.
Manning Publications, 2009.

[Pardee01] Pardee, William. To Satisfy & Delight Your Customer: How
to Manage for Customer Value. Dorset House Publishing Company,
Incorporated, 1996.

[Poppendieck05] Poppendieck, Mary, and Tom Poppendieck. Lean Software
Development: An Agile Toolkit. Addison-Wesley Professional, 2003.

[Poppendieck06] Poppendieck, Mary, and Tom Poppendieck. Leading Lean
Software Development: Results Are Not the Point. Addison-Wesley
Professional, 2009.

[Rainsberger01] Rainsberger, J. B. JUnit Recipes: Practical Methods for
Programmer Testing. Manning Publications, 2004.

[Richardson01] Richardson, Jared, and William A. Gwaltney. Ship It! A
Practical Guide to Successful Software Projects. Pragmatic Bookshelf,
2005.

[Rothman01] Rothman, Johanna. Hiring the Best Knowledge Workers,
Techies & Nerds: The Secrets & Science of Hiring Technical People.
Dorset House Publishing Company, Incorporated, 2004.

Wow! eBook <WoweBook.Com>

http://www.infoq.com/articles/hiranabe-lean-agile-kanban
http://www.infoq.com/articles/hiranabe-lean-agile-kanban

ptg

References322

[Shore01] Shore, James, and Shane Warden. The Art of Agile Development.
O’Reilly Media, 2007.

[Siniaalto01] Siniaalto, M., and P. Abrahamsson. Comparative Case Study
on the Effect of Test-Driven Development on Program Design and Test
Coverage. ESEM 2007.

[Siniaalto02] Siniaalto, M., and P. Abrahamsson. “Does Test-Driven
Development Improve the Program Code? Alarming Results from a
Comparative Case Study”. Proceedings of Cee-Set 2007, 10–12 October,
2007, Poznan, Poland.

[Stott01] Stott, Will, and James W. Newkirk. Using FIT Inside Visual Studio
Team System: Better Software Development for Agile Teams. Addison-
Wesley Professional, 2007.

[Wake01] Wake, William C. Extreme Programming Explored. Addison-
Wesley Professional, 2001.

[Weinberg02] Weinberg, Gerald M. Perfect Software: And Other Illusions
About Testing. Dorset House, 2008.

[Whittaker02] Whittaker, James A. How to Break Software: A Practical Guide
to Testing. Addison-Wesley Professional, 2002.

[Wiegers01] Wiegers, Karl. Software Requirements, 2nd Edition. Microsoft
Press, 2003.

[Wiegers02] Wiegers, Karl. More About Software Requirements: Thorny Issues
and Practical Advice. Microsoft Press, 2006.

[Williams01] George, Boby, and Laurie Williams. “An Initial Investigation
of Test Driven Development in Industry.” Proceedings of the 2003 ACM
symposium on Applied computing table of contents, 2003.

[Williams02] Williams, Laurie, and Robert Kessler. Pair Programming
Illuminated. Addison-Wesley Professional, 2002.

Wow! eBook <WoweBook.Com>

ptg

Epilogue

“All good things must come to an end.”
English Proverb

Acceptance test-driven development (ATDD) has been presented through stories
and examples. Here is the final word.

Who, What, When, Where, Why, and How

The Preface stated the context of this book and the questions to be answered.
Here are the questions again, and if you skipped the entire book, here are the
answers.

• Who—The triad—customer, developer, and tester communicating and
collaborating

• What—Acceptance criteria for projects and features, acceptance tests for
stories

• When—Prior to implementation—either in the iteration before or up to
one second before, depending on your environment

• Where—Created in a joint meeting, run as part of the build process

• Why—To effectively build high-quality software and to cut down the
amount of rework

• How—In face-to-face discussions, using Given/When/Then and examples

So What Else Is There?

Feel free to write to me at ken.pugh@netobjectives.com if you have comments
or questions. Let me know what topics you would like covered in more depth.
With the web world, it’s easier to increase the amount of information, so check

323

Wow! eBook <WoweBook.Com>

ptg

Epilogue333222444

out atdd.biz. If your triad needs an in-person run-through of creating acceptance
tests, Net Objectives offers courses and coaching. (www.netobjectives.com)

Legal Notice

Based on Sam’s growing business, some readers may decide they want to open
a CD rental store. For information regarding the legality of renting CDs in the
United States, please see 17 USC 109 (b)(1)(A). In Japan, it is legal to have a
licensed CD rental store that pays royalties to JASRAC (Japanese Society for
Rights of Authors Composers and Publishers) [Isolum01].

Experiences of Others

I asked people to describe how ATDD was introduced to their teams and the
benefits it produced. Here are their stories.

Rework Down from 60% to 20%

One team I have worked with was asked how much of their time they would
estimate they spend on reworking features. Their estimate was about 60%. Hav-
ing seen this situation a few times, I have found a method that seems to work
with some pretty amazing results. Using FitNesse and Selenium, development
items are written as executable specifications. The business analyst, tester, and
developer define the feature in a FitNesse wiki and run automated tests on the
feature from the same place. Using the Slim Scenario tables, features are writ-
ten as English-readable sentences and then translated into commands below the
covers. This makes the tests readable by the less technical members of the team
so they can feel confident that they know what is being tested.

The business analyst types up what the feature should do. The developer
and tester ask questions to define the scope, and the answers are added to the
wiki. The tester translates the English sentences into Selenium scripts, and the
developer starts to write unit tests. Once the Selenium scripts are complete, the
developer runs them to check on the development process. The customer can
run the tests at any time to see how much has been completed. After [the team
members] started working through features this way, they estimated that their
time spent on rework decreased to about 20%.

Dawn Cannan, agile tester
www.passionatetester.com/

Wow! eBook <WoweBook.Com>

www.netobjectives.com
www.passionatetester.com/

ptg

Experiences of Others 325

Workflows Working First Time

I have experience with acceptance test-driven development on automated work-
flows. My team works on automated workflows for a European Mobile virtual
network operator. When I started to coach/manage this team, the challenge was
to keep (regain) the control on the software. With unit testing and then test-
driven development, we took the control of the code base and we started to
refactor and redesign workflow’s actions.

After that appeared our most difficult challenge. Individually, each action
worked fine, but each time the development team or the QA team tested work-
flows from the beginning to the end, we found a lot of defects.

To solve that problem, we wrote some acceptance tests with Junit. It was
a difficult job because workflows generate many outputs (messages, database
change, web services calls, etc.) and need many inputs. The first results were
not convincing: We added a lot of mocks and fakes and so missed a lot of little
defects. The tests were difficult to understand and hard to maintain.

Then we decided to use Concordion and reduce the use of mocks and fakes.
We sold the idea to the QA team, the CIO, and the business people. On the fol-
lowing project, we built a proof of concept on some new workflows to convince
people that the time required to build the tests was valuable. It was a technical
success: All the workflows covered by acceptance testing worked the first time,
and the defects that were found were just special cases not covered by the tests.

We generalized the use of acceptance test-driven development to other parts
of the information system. For us, that was a success because we reduced the
number of defects delivered to QA, and we could start to work on the subject of
continuous delivery. Our only regret is that, for the moment, the tests are pre-
pared and used only by QA and the development team, not the business people.
Perhaps the root cause of this issue is that we use the acceptances tests to check
a lot of details that are not directly useful to the business people or that the most
useful client for our automated workflow is our QA team.

Gabriel Le Van
Paris, France

Little Room for Miscommunication

I helped develop the Visual Hospital Touchscreen Solution for energizedwork.
(See http://lean-health.blogspot.com/2010/02/visual-hospital-system.html for
details.) The approach we took was:

Wow! eBook <WoweBook.Com>

http://lean-health.blogspot.com/2010/02/visual-hospital-system.html

ptg

Epilogue326

1. Quality assurance (QA) and product owner prepare the stories.

2. QA pair with the developers at the start of a story, breaking the acceptance
criteria up into slices and agreeing the probable order in which the slices
will be delivered. We keep our stories small—2 days or less. There may be
around eight acceptance criteria per story and usually one or two accept-
ance criteria per slice.

3. QA and developers jointly write the automated acceptance tests for the
first slice. We use Selenium IDE with a custom extension enabling Given-
When-Then style tests, e.g.

given a male, cardiovascular patient called Joe Bloggs in
Bed05, Holborn
when I tap Joe’s discharge icon
then the discharge dialog should appear

We feel using Selenium IDE creates less of a barrier to entry for the QA
and makes it easier to write the tests. Using the IDE, you can easily step
forward and backward through a test or jump halfway through it. The
drawback of the IDE is that it’s harder to set up test data, and compara-
tively slow. (We’ve written more extensions that go a long way to mitigat-
ing both these problems.)

4. When the developers have the tests passing, we ask the QA to review, dis-
cuss any changes we had made to the tests, and assuming all is well, check
in, then repeat from step 3 until all the slices are complete.

The benefits:
I think the biggest win is that because the automated acceptance tests are

written jointly by the QA and developers, using near-plain English (as permit-
ted by Given-When-Then), there is very little room for miscommunication. This
means less rework and a happier QA/developer relationship. Other benefits
include that the source code closely matches the business domain language and
you can return to a test after 6 months and understand exactly what it was sup-
posed to be doing.

Stephen Cresswell
Acuminous Ltd.

Saving Time

Acceptance test-driven development dovetails nicely with what I’ve called mock
client testing. When creating automated tests for any body of code, write a test
that pretends to be the client. Consume the code in the way you think the client

Wow! eBook <WoweBook.Com>

ptg

Experiences of Others 327

will use the code. If you’re writing an API, write a test that uses the API the way
you expect it to be used, [and] then write the code behind the API call. The goal
is to create a suite of tests that exercise the system the way you expect it to be
used. This never completely exercises the code, but it’s a great way to ensure all
the basic functionality is in place.

A few years ago I was managing a small group of very talented developers at
a startup. We had an existing product that was fairly complicated, and we were
adding a network API. As the effort began, the team bogged down almost imme-
diately. The work that one person finished would be broken by a teammate or
by the same developer! The work was not going well, and it appeared that we
had a great deal of frustrating work ahead of us.

I looked for a solution to this problem. This was a while before the current
test automation movement, but that’s essentially what we hit upon. I asked the
team to create a series of tests, one for each API, and then implement the feature.

Every person on the team disagreed with me. They didn’t like this new direc-
tion. One of the developers said, “We don’t have the cycles to write tests, then
write code as well! If you insist, I’ll do it, but I want you to know how I feel. This
is going to slow us down even more.”

I insisted, and [the] team moved forward. It’s worth noting that the team
was already using a continuous integration system, but only for compiles, not
testing.

Resistance was high during the first week, but I kept asking about the tests
and checked to make sure they were being checked in. The second week, it was
grudgingly conceded that the tests weren’t a waste of time, but it was still just
breaking even when you considered how much time it took to write them. But
week three was the turning point.

By week three, the team had finally written enough tests that they could cre-
ate them rapidly and generated enough tests that they started to see the benefit.
They’d touch a piece of code, a test for a completely different API would break,
and they’d fix it. The long hours in the debugger evaporated. When a problem
occurred, the test found it within minutes instead of days later.

In my mind, the effort had truly succeeded when my skeptical co-worker
came to me and said, “Jared, I was completely wrong. I had no idea how much
time this would save us. It keeps us on track, catches problems when they occur,
and now that we’ve had some practice, it doesn’t take much time to add to the
test suite.”

Whether you call it acceptance test-driven development or mock client test-
ing, create the tests that drive your product. Keep your team focused on building
what you need, and catch the problems as quickly as they occur.

Jared Richardson
http://agileartisans.com/main

Wow! eBook <WoweBook.Com>

http://agileartisans.com/main

ptg

Epilogue328

Getting Business Rules Right

Scenarios for testing:
Years ago, I delivered software for primary care to the National Health Service
(NHS, the UK’s public health provider). Every year we received new require-
ments that we had to meet to get our software accredited as providing the func-
tionality someone in primary care needed. We received this in two packages.
One was a conventional list of requirements; the other was a test pack. The test
pack had a set of scenarios—some end to end, some covering a specific feature
that needed to pass before you could get accreditation. Early we learned that
the test pack was the best source of information on what we needed to build to
be “done.” Requirements are vague and open to interpretation. Scenarios are
concrete, specific, and rarely have interpretation. Ever get that moment where
you built something and then had an argument with the person who wrote the
requirement because [he] just told you that your implementation is nothing like
[his] requirements? Ever had [him] point to some sentence that you overlooked
that changes the whole perception of how you deliver the story? Scenarios avoid
that problem because they call attention to the correct behavior of the software.

So the ideal is to capture the scenarios that the software should support.
Those give you the conditions for accepting the story as done. These are the
acceptance tests. Now the composition of your team will dictate to some extent
who is responsible for the parts of this process. In most cases, I have found it
unlikely that the users of your software will be able to express the scenarios,
though sometimes you might get acceptance criteria from them. In our case we
have domain experts who act as proxies for real customers, so we ask them to
define acceptance criteria—usually just a list—of things that a successful imple-
mentation will represent.

Interestingly, we occasionally fall down on getting scenarios written and end
up developing off the acceptance criteria. The result is all too predictable. What
gets developed is not quite right or what was quite intended, and we end up with
rework. We certainly need to get better at this discipline. A root cause analysis
tends to suggest that what fails for us here is the communication about what
we should build. The storytest first approach is forcing the correct behavior of
understanding the story before we build it.

Acceptance tests and unit tests:
There is definitely some pressure here with folks occasionally feeling that we
are “testing twice:” once in the acceptance test and once in the unit test. Most
developers would prefer just to write the unit test and not have to implement the
acceptance test. I believe that acceptance testing comes into its own for ensuring
we have developed the right work and during large-scale refactoring.

Wow! eBook <WoweBook.Com>

ptg

Experiences of Others 329

However, I think this feeling—that the acceptance tests are not adding
value—occurs most often when you slide into post-implementation FitNesse
testing because your scenarios were not ready. A lot of the value-add comes
from defining and understanding the scenario up front. Much of the value in
acceptance testing comes from agreeing what “done” means. That is often less
clear than people think, and defining a test usually reveals a host of disagree-
ments and tacit assumptions.

It is hard to write unit tests as part of the definition of the story. You don’t
necessarily know how you will build the story at planning or definition. The
classes that implement the functionality probably don’t exist, and you cannot
exercise them from a test fixture at that point. Tools like Cucumber and Fit-
Nesse decouple authoring a test from implementing the test fixture for that test.
This enables you to author the scenario in your test automation tool before
you begin implementing the fixture that exercises the SUT. This is the key to
enabling a test-first approach, where you need to communicate the scenario for
confirmation prior to commencing work such as planning. Tools like FitNesse
and Cucumber provide an easy mechanism to communicate your scenarios. We
find that FitNesse allows customers and developers to communicate about the
scenario before implementation. You can also see the results of executing it.

Because the conversation is more important than the tool, a tool like FitNesse
or Cucumber may not be appropriate for the acceptance test. The most likely
case is that you do not have any business rules to put under test. Don’t feel
constrained to use a particular tool. The most important thing is to define the
acceptance test and then decide what tool is appropriate to automate the test.
We even have some cases where the value of automation is too low. Where we
are configuring the system, for example, it may be easier to test the rules that
work with the configured system than test the act of configuring the system
itself.

No user interface:
One obvious point here is that no user interface has been defined as yet. One
obvious problem is that testing through the UI depends on the UI being com-
pleted to define tests. However, it can be worth thinking about mocking up the
UI at the same time as you write the scenarios using a tool like Balsamiq.

We had a struggle at the beginning of the project over responsibility for defin-
ing how this should look before realizing that it needed to be cooperative. In the
end, it all comes back to the agile emphasis on communication. The customer
asks for features, but the developers need to negotiate how the features will be
implemented.

Some folks still like to work from the UI down, whereas I want them to work
from the acceptance tests on down, then hook up to the UI. It’s probably all tilt-
ing at windmills at some point, but for me while both are essential to getting it

Wow! eBook <WoweBook.Com>

ptg

Epilogue330

right, I see more cost in the majority of cases to the rework for not getting the
business rule right than to changing the UI.

Ian Cooper
Codebetter.com

Game Changing

I am an in-house software development consultant at Progressive Insurance and
a proponent of ATDD. Here’s my story....

In 2006, I started an assignment with a group that published service APIs
to other parts of our company for the purpose of retrieving data from external
vendors. At the time, they were testing most of their services manually, using the
GUIs of the calling applications. Their testing was dependent upon the availabil-
ity of both their own and their clients’ test environments, and disruptions were
common. Additionally, their service request and response schemata consisted of
thousands of fields, but only dozens of those fields were exposed directly in the
client GUIs. The rest were calculated, defaulted, or simply ignored. Not surpris-
ingly, the test team felt squeezed by schedule pressure and quality problems.

Their management decided that they were simply out-gunned by the technical
challenge before them, so they recruited some programmers with testing skills
(and vice versa) to join the team. That’s where I and a couple of other test engi-
neers came onto the scene. One of the first things we did was raise awareness
about the low level of coverage for these relatively complex interfaces. (This was
somewhat disconcerting for veteran team members, and a tribute to the matu-
rity of all involved that these conversations were rarely contentious.) We also
began surveying other test teams within our company to see if there were any
tools already in-house that we could use to circumvent the client GUIs and go
directly at our service interfaces. We discovered a group that was using Fit for a
similar purpose, and it was love at first sight.

We copied their implementation (Fit and OpenWiki with some customiza-
tions) to our environment, and within days we were creating and executing tests
for some of our larger projects. Within a few weeks we had these tools well
integrated into our infrastructure and processes. Tests were now being defined
during or shortly after requirements definition, frequently serving to clarify
requirements, but we didn’t know then to call it ATDD. Soon, developers were
asking for our tests to run before check-in and were helping with fixture design
and development.

The number of tests for our systems typically increased five-fold as we intro-
duced our implementation of automated ATDD, and we moved from execut-
ing a handful of test passes per project to a handful of passes per day. Defects

Wow! eBook <WoweBook.Com>

ptg

Experiences of Others 331

discovered in our QA environment dropped dramatically because we were run-
ning the tests in predecessor environments; the tests became informal entry cri-
teria. Test projects were costing about the same and taking about the same
amount of time, but quality was increasing significantly. In fact, the team’s qual-
ity ranking within the company, based on production availability of our sys-
tems, improved from worst to first in about a two-year period.

In addition to the quality improvements, we gained a great deal of confidence
in our ability to refactor our systems and move them through environments
because coverage had increased substantially and test execution had become rel-
atively effortless. Furthermore, the clarity, usability, and credibility of the tests
led to more collaborative test failure investigations. It was not uncommon to see
developers, testers, and business analysts huddled around a screen or camped
in a conference room discussing the significance of patterns of red cells on a test
result table, discovering and resolving issues in minutes where formerly it had
taken hours or days of asynchronous communication. While there are many
other ways that we have continued to improve our testing, nothing has been as
“game changing” as our move to automated ATDD with Fit.

Greg McNelly
Progressive Insurance

Tighter Cross-Functional Team Integration – Crisp Visible Story
Completion Criteria – Automation Yields Reduced Testing Time

I am an engineering manager for a major publishing company. The adop-
tion of Story Acceptance Testing with the FitNesse framework has resulted in
tighter cross-functional integration between development and QA team mem-
bers. Acceptance tests are written on a per story basis at the start of the sprint.
The tests and the results are rendered visually in an easy to understand table
format—they are even comprehensible by nontechnical business stakeholders.
Because the application under development is business logic intensive and has a
minimal UI, the demo at the sprint review meeting consists primarily of running
and viewing the test results.

On previous projects, the functional testing efforts were entirely manual and
very time consuming. To ensure a stable release, it was necessary to implement
a feature freeze 2+ months in advance of the release date. With the manual
approach to testing, the sprint would frequently end with untested stories.
Adoption of the FitNesse framework provides nearly instantaneous feedback
regarding the completion status of each story.

Based on the rapid ROI of the FitNesse adoption for this project, all sub-
sequent new projects will adopt a test automation strategy. Currently, QA is

Wow! eBook <WoweBook.Com>

ptg

Epilogue332

writing the tests. Going forward, I anticipate that a broader audience (business
analysts and Product Owners) will contribute to test development.

Gary Marcos
http://www.linkedin.com/in/agile1

What Is Your Story?

Share your success on how ATDD improved your organization with others.
Send your story to ken.pugh@netobjectives.com or visit http://atdd.biz.

Summary

• The Who, What, When, Where, Why, and How have been explained.

• The experiences and benefits have been documented.

• What are you waiting for? Why not try it?

Wow! eBook <WoweBook.Com>

http://www.linkedin.com/in/agile1
http://atdd.biz

ptg

333

Index

A
acceptance criteria

defined, 12
explained, 95
feature acceptance criteria, 45-46
story acceptance criteria, 52

acceptance tests
acceptance criteria. See acceptance

criteria
agile principles, 20-21
anti-missile acceptance test, 276
automated acceptance tests, 35-36,

89-90
Bad Customer ID test, 90
benefits, 2, 214-215
blocks

change issues, 213
explained, 212
monads, 212
risks, 214
unavailable customers, 213

breaking up stories with, 95-96
as bug reports, 201-202

production bugs, 202
regression testing, 202
root cause analysis, 201-202

business capabilities, 172-178
business rules. See business rules
Card Processor Charges Matches

Rental Charges test, 105
case studies. See case studies
CD Already Rented test, 84
CD Limit Reached and Late Rental

test, 88
CD Limit Reached test, 85-86
Charge Submitted During Check-In

test, 108
Charges Agree with Transfer test, 104

Check-In CD test
business rules, 100
creating, 101
Cucumber framework, 297
Fit framework, 286-287
relationships, 165
Robot framework, 295-296
Slim—Cucumber Style
framework, 291

Slim—Table Style framework,
288-290

story map of activities, 113-114
Check-Out CD test

Cucumber framework, 296-297
Fit framework, 284-285
Robot framework, 295
Slim—Cucumber Style
framework, 291

Slim—Table Style framework,
288-289

communication, 66-68, 212
context. See context
control and observation points, 27
creating, 69-70
Current Late Rental When Renting

test, 86
customer examples

acceptance test detail, 275
explained, 274
fuzzy acceptance tests, 274

data conversion projects, 170
database conversion projects, 170
decoupling user interface

explained, 131-133
separating user interface from
service, 157-158

simplifying testing by, 136
defined, 2-3, 12

Wow! eBook <WoweBook.Com>

ptg

Index334

developer acceptance tests
field display tests, 145-147
tabular display tests, 147-151

development review, 115-116
from charter to deliverable, 120-121
deployment plans, 120
quality attribute tests, 117-119
separating state from display,
116-117

usability testing, 116
workflow tests, 119-120

device testing, 254-255
events, 137-139
explained, 3, 211-212
external interfaces

component tests, 107-111
creating acceptance tests for, 107
explained, 100-108
system context, 112-113
test doubles and mocks, 111-112

feedback, 18
importance of, 10-11
internal design from tests, 252-254
Invalid Card Response Is Charge

Declined test, 110
lack of, 170-173
large systems, triads for, 167-169
lean principles, 20-21
legacy systems, 172
manual testing, 172
multi-level tests, 90-93
objectives, checking, 93-94
origin and development, 5-6
positive and negative testing, 26-27
post-implementation tests, 17-18
power of three, 277
preimplementation tests, 19-20
process, 210
project charters, 39-42
relationships

alternative representations, 167
entities and, 161-163
explained, 161
multiple relationships, 163-165

requirements
constraints, 275
decoupling, 276

defined, 275
documenting, 275-276
explained, 27-28
high-level requirements, 42-46
separation of issues, 276-277
user interfaces as part of
requirements process, 255

risks, 214
role in overall development process,

209-212
running, 25-26, 78-80
scenarios, 57

conceptual flow, 65
scenario handling, 178-179
story maps, 63-64

separation of issues. See separation
of issues

service provider tests
comparing implementations, 155-156
explained, 151
interface, 151-154
quality attribute tests, 155

states
internal states, 142-144
state tables, 139-142
state transitions, 139-142
transient or persistent states, 144

stories
acceptance criteria, 52
breaking down features into
stories, 48

cross-story issues, 88
customer terms, 54
developing, 51
explained, 47-48
INVEST criteria, 55-56
persona, 50-51
role attributes, 49-50
roles, 49
size of, 53-54
story estimates, 52
story maps, 63-64, 113-114
use cases, 57-63

success stories, 324-332
tables with, 298-300
test evaluation

confirming environment, 193

Wow! eBook <WoweBook.Com>

ptg

Index 335

fragility, 192-194
idempotence, 192
implementation issues, 197
points to remember, 197-198
separation of concerns, 194-195
spell checking, 192
test failure, 195
test redundancy, 196-197
test sequence, 193-194
understandability to customers,
191-192

test exercises
calculator test exercise, 310-313
Sam’s CD Rental exercise, 314
triangle exercise, 314

test frameworks
Cucumber, 296
explained, 283
Fit, 284
Robot, 295
Slim—Cucumber Style framework,
291

Slim—Table Style, 286-284
websites, 298

test platforms, 251-252
test presentation

complex data, 187
custom table forms, 188
customer understood tables, 183-185
specifying multiple actions, 185-187
tables versus text, 185

test scripts, 31-33
test setup

ameliorating potential problems,
259-260

common setup, 257-259
persistent storage issues, 260-261
test order, 260

test structure
action tables, 75-76
calculation tables, 73-74
data tables, 74-75
explained, 71-73

testing layers, 210-211
testing matrix, 23-24
testing process, 37
testing systems with random

events, 277

types of tests, 23-25
tests for business rules, 86
tests for exception scenarios, 83-87
tests with example values, 76-78
tests with values in text, 78

user interface tests, 33-34, 93
uses of

breaking down stories, 200
degree of doneness, 199
developer stories, 200
estimation aid, 200

workflows, improving, 178-181
xUnit tests, 34-35

action tables, 75-76
activities, story map of, 113-114
Acuminous Ltd., 326
Adzic, Gojko, 6
“The Agile Manifesto,” 20
agile principles, 20-21
agileartisans.com, 327
airline industry

conversion to SHARES reservation
system, 252

ubiquitous language, 207
Allowed to Reserve business rule, 126

separation of issues, 126-127
simplified rule, 128

allowedToReserve() method, 253-254
ameliorating potential problems, 259-260
Angelou, Maya, 83
anti-missile acceptance test, 276
applications, determining applications to

run on server, 244-248
assigning business value, 280-281
Atwood, Margaret, 1
auto mileage displays, 18
automated acceptance tests, 35-36, 89-90

B
Bad Customer ID test, 90
Bain, Scott, 27
BDD (behavior-driven development), 5
Beck, Kent, 6, 305
behavior-driven development (BDD), 5
benefits to acceptance testing, 2, 214-215
Berra, Yogi, 29
big picture test, 227-228

Wow! eBook <WoweBook.Com>

ptg

Index336

black box testing, 255-256
blocks to acceptance testing

change issues, 213
explained, 212
monads, 212
risks, 214
unavailable customers, 213

boundary value analysis, 255
breaking down tests, 264-269

disallowed domain tests, 268-269
domain breakdown tests, 266-268
local-part validation, 265-266
tests to ensure connection, 269
verification tests, 269

breaking up stories with acceptance tests,
95-96, 200

Browning, Elizabeth Barrett, 23
Buffett, Warren, 172
bug reports

acceptance tests as, 201-202
production bugs, 202
regression testing, 202
root cause analysis, 201-202

Burger King, off-menu ordering, 178-179
business capabilities, 172-178
business rules

business rule tests, 96-100
Check-In CD test, 100
example of, 29-31
exposing, 178
reusable business rules, 158-159
separation of issues, 125-128
tests for, 86

business value
business value charts, 281
developer stories, 281-282
estimating, 280-281
explained, 279-280
sources of, 279
tracking, 223

C
calculation tables, 73-74
calculator test exercise, 310-313
Cann, Richard, 229

Cannan, Dawn, 324
Card Processor Charges Matches Rental

Charges test, 105
Carroll, Lewis, 6
case studies

e-mail addresses case study, 263-264
breaking down tests, 264-269
disallowed domain tests, 268-269
domain tests, 266-268
local-part validation, 265-266
tests to ensure connection, 269
verification tests, 269

highly available platform
context for switching servers, 243
test for switching servers, 244
test for technical rule, 246-248

library print server case study
context, 235-236
workflow test, 236-241

retirement contributions case study
big picture test, 227-228
business value tracking, 223
context, 219-220
event table, 228
exception: discrepancies less than a
dollar, 223-224

exception: missing participant, 225
main course test, 220-222
state transitions, 228-230
two simultaneous exceptions,
225-227

signal processing case study
context, 229
developer tests, 233
sound levels, 229-232

case tests, 255
category-based rental fees

Cucumber framework, 296-297
Fit framework, 287
Robot framework, 295-296
Slim—Cucumber Style framework, 291
Slim—Table Style framework, 287-291

CD Already Rented test, 84
CD Limit Reached and Late Rental

test, 88
CD Limit Reached test, 85-86

Wow! eBook <WoweBook.Com>

ptg

Index 337

CD rental example
action tables, 75-76
Allowed to Reserve business rule, 126

separation of issues, 126-127
simplified rule, 128

allowedToReserve() method, 253-254
Bad Customer ID test, 90
calculation tables, 73-74
Card Processor Charges Matches

Rental Charges test, 105
CD Already Rented test, 84
CD Limit Reached and Late Rental

test, 88
CD Limit Reached test, 85-86
CD rental limit reached, 185-187
Charge Submitted During Check-In

test, 108
Charges Agree with Transfer test, 104
Check-In CD test

business rules, 100
creating, 101
Cucumber framework, 297
Fit framework, 286-287
relationships, 165
Robot framework, 295-296
Slim—Cucumber Style
framework, 291

story map of activities, 113-114
Check-Out CD test

creating, 76-78
Cucumber framework, 296-297
Fit framework, 284-285
Robot framework, 295
Slim—Cucumber Style
framework, 291

Slim—Table Style framework,
288-289

Check-Out screen, 93
Current Late Rental When Renting

test, 86
customer terms, 54
customer understood tables, 183-185
data tables, 74-75
development review, 115-116

from charter to deliverable, 120-121
deployment plans, 120
quality attribute tests, 117-119

separating state from display,
116-117

usability testing, 116
discount calculation

automated acceptance tests, 35-36
content diagram, 34
explained, 29-31
overall test, 36-37
test script, 35-36
xUnit test, 34-35

display for reservation allowed,
132-134

events, 137-139
exercises, 314
feature acceptance criteria, 45
features list, 44
field display tests, 145-147
Invalid Card Response Is Charge

Declined test, 110
people, 13
persona, 51
post-implementation tests, 17-18
preimplementation tests, 19-20
relationships

alternative representations, 167
entities and, 161-163
explained, 161
multiple relationships, 163-165

rental counts, computing, 130
rental fees. See rental fees
rental history, 128-130
rental sequence, 113
role attributes, 50
roles, 49
service provider tests

comparing implementations, 155-156
explained, 153
interface, 153-154
quality attribute tests, 155

states
internal states, 142-144
state tables, 139-142
state transitions, 139-142
transient or persistent states, 144

stories, 51
story acceptance criteria, 52
Submit Charge story, 100-108

Wow! eBook <WoweBook.Com>

ptg

Index338

system, 11-13
tabular display tests, 147-151
use cases from user stories, 57-63
ZIP code lookup, 151-156

change issues, 213
Charge Rentals story, 95
Charge Submitted During Check-In

test, 108
Charges Agree with Transfer test, 104
charters, 39-42
charts, business value charts, 281
Check-In CD test

business rules, 100
creating, 101
Cucumber framework, 297
Fit framework, 286-287
relationships, 165
Robot framework, 295-296
Slim—Cucumber Style framework, 291
Slim—Table Style framework, 288-290
story map of activities, 113-114

checking
objectives, 93-94
spelling, 192

Check-Out CD test
creating, 76-78
Cucumber framework, 296-297
Fit framework, 284-285
Robot framework, 295
Slim—Cucumber Style framework, 291
Slim—Table Style framework, 288-289

Check-Out screen, 93
Cicero, 131
Codebetter.com, 330
Cohen, Leonard, 183
Cohn, Mike, 200
common test setup, 257-259
communication, 66-68, 212
comparing implementations, 155-156
complex data, 187
component tests

explained, 25, 211
for external interfaces, 107-111

conceptual flow, 65
confirming environment, 193
connections, tests to ensure

connection, 269

Constantine, Larry, 276
constraints, 263, 275
context

context diagrams, 70
e-mail addresses case study, 263-264
explained, 70, 273-274
highly available platform, 243
library print server case study, 235-236
retirement contributions case study,

219-220
signal processing case study, 229
system context, 112-113

continuity, 207
control points, 27
conversion projects

currency conversion example
acceptance test approach, 307-310
test-driven approach, 306-307
unit tests, 306-307

data conversion, 170
database conversion, 170

Cooper, Ian, 330
Coplien, Jim, 6
copying files, 314
Cresswell, Stephen, 326
cross-story issues, 88
Cucumber framework, 296
currency conversion example

context, 305
test-driven approach, 306-307
unit tests, 306-307

Current Late Rental When Renting
test, 86

custom table forms, 188
customers

customer examples
acceptance test detail, 275
explained, 274
fuzzy acceptance tests, 274

customer terms, 54
customer understood tables, 183-185
customer understood tests,

191-192, 211
customer unit, 16
data tables, 187
unavailable customers, 213

Wow! eBook <WoweBook.Com>

ptg

Index 339

D
data conversion projects, 170
data tables, 74-75, 304
database conversion projects, 170
DDD (domain-driven design), 5

overlapping domains, 207
ubiquitous language, 205-207

decision table testing, 256
decoupling user interface

decoupling requirements, 276
explained, 131
separating user interface from service,

157-158
simplifying testing by, 136

degree of doneness, 199
delta, 260
deployment plans, 120
determining applications to run on server,

244-248
developer acceptance tests

field display tests, 145-147
signal processing case study, 233
tabular display tests, 147-151

developer stories, 200, 281-282
developer unit, 16
development of acceptance testing, 5-6
development process

explained, 9-10
role of acceptance tests in, 209-212

development review, 115-116
from charter to deliverable, 120-121
deployment plans, 120
quality attribute tests, 117-119
separating state from display, 116-117
usability testing, 116
workflow tests, 119-120

device testing, 254-255
Dijkstra, Edsger, 191
disallowed domain tests, 268-269
discount business rules, 299-301
discount calculation

automated acceptance tests, 35-36
content diagram, 34
explained, 29-31
overall test, 36-37
test script, 31-33
xUnit test, 34-35

discrepancies, handling in retirement
contributions case study, 223-224

documenting
bugs with acceptance tests, 201-202
requirements, 275-276
with use cases, 63

documents, printing to print queue
(workflow), 237-238

domain tests
disallowed domain tests, 268-269
domain breakdown tests, 266-268

domain-driven design. See DDD
(domain-driven design)

domains, overlapping, 207
doneness, degree of, 199
DRY (Don’t Repeat Yourself)

principle, 259
Dyer, Wayne, 100

E
EATDD (executable acceptance

test-driven development), 5
EDD (example-driven development), 5
e-mail addresses case study

breaking down tests, 264-269
context, 263-264
disallowed domain tests, 268-269
domain tests, 266-268
local-part validation, 265-266
tests to ensure connection, 269
verification tests, 269

embedded technical projects, 283
ensuring connections, 269
entities and relationships, 161-163
environment, confirming, 193
EnvisionWare, 235
equivalence partitioning, 255
estimates (story), 52, 55
estimating business value, 280-281
estimation aid, 200
evaluating tests. See test evaluation
Evans, Eric, 5
events

explained, 137-139
retirement contributions case study,

220, 228
example-driven development (EDD), 5

Wow! eBook <WoweBook.Com>

ptg

Index340

example values, tests with, 76-78
exceptions

retirement contributions case study
discrepancies less than a dollar,
223-224

missing participant, 225
two simultaneous exceptions,
225-227

scenario handling, 178-179
tests for exception scenarios, 83-87

executable acceptance test-driven
development (EATDD) , 5

exercises
calculator test exercise, 311-313
file copying exercise, 314
Sam’s CD Rental exercise, 314
triangle exercise, 314

expected output, 220
exploratory tests, 24
exposing business rules for testing, 178
external constraints, 275
external interfaces, 100-108

component tests, 108-111
creating acceptance tests for, 107
system context, 112-113
test doubles and mocks, 111-112

F
failure of tests, 195
Feather, Michael, 172
feature acceptance criteria, 45-46
features list

breaking down into stories, 48
explained, 42-44

feedback, 18
field display tests, 145-147
file copying exercise, 314
Fit framework

category-based rental fees, 287
Check-In CD, 286-287
Check-Out CD, 284-285
explained, 284
setup, 284

FitNesse, 276
forms, custom table forms, 188
fragility of tests, 192-194
frameworks. See test frameworks
fuzzy acceptance tests, 274

G-H
Gaye, Marvin, 299
Grozier Technical Systems, 229

headers for Slim—Table Style
framework, 288

high-level requirements
explained, 42-46
feature acceptance criteria, 45-46
features list, 42-44

highly available platform
context for switching servers, 243
test for switching servers, 244

send alert to administrator, 245-246
server goes down, 245

test for technical rule, 244-248
Hofstadter, Douglas, 167, 273
Honda Insight charter objectives, 41
Hunter, Ivy, 299

I
idempotence, 192
identity, 206
implementation issues

comparing implementations, 155-156
retirement contributions case

study, 222
and test evaluation, 197

importance of acceptance testing, 10-11
improving workflows, 178-181
independence of stories, 55
internal constraints, 275
internal design from tests, 252-254
internal states, 142-144
Invalid Card Response Is Charge

Declined test, 110
INVEST criteria, 55-56
issues, separation of, 194-195, 276-277

J-K
Johnson, Samuel, 95

Kennedy, Robert, 209
Kerievsky, Joshua, 5
King, Carole, 243
Knuth, Donald, 263

Wow! eBook <WoweBook.Com>

ptg

Index 341

Kolsky, Amir, 27, 194
Koskela, Lasse, 6

L
lack of acceptance tests, 170-173
language, ubiquitous, 205-207
large systems, triads for, 167-169
Le Van, Gabriel, 325
lean principles, 20-21
legacy systems, 172
Leq (equivalent continuous sound level),

229-232
library print server case study

context, 235-236
workflow test, 236-241

workflow for printing jobs from print
queue, 239-241

workflow of printing two documents
to print queue, 237-238

local-part validation, 265-266
Lovasik, Lawrence G., 199

M
main course test (retirement contributions

case study)
events, 220
expected output, 220
implementation issues, 222
separation of concerns, 222
setup, 220-221

manifestations, 275
manual testing, 172
Marcos, Gary, 332
Marick, Brian, 5
Martin, Micah, 276
Martin, Robert, 276
Marx, Groucho, 67, 305
Maslow, Abraham, 299
McDonald’s, off-menu ordering, 179
McNelly, Greg, 331
measurability of objectives, 43
Meszaros, Gerard, 23, 259
methods, allowedToReserve(), 253-254
mileage displays in autos, 18
missing participants, handling in

retirement contributions case
study, 225

mocks, 111-112
Model-View-Controller pattern, 253
module tests, 211
monads, 212
money

currency conversion example
acceptance test approach, 307-310
context, 305
test-driven approach, 306-307

problems with, 305
multi-level tests, 90-93
multiple actions, specifying, 185-187
multiple relationships, 163-165
Murray, Bill, 14

N
negative testing, 26-27
negotiability of stories, 55
Newbury, Mickey, 137
North, Dan, 5

O
objectives

checking, 93-94
of project charters, 40-42

observation points, 27
Once and Only Once Principle, 259
order of tests, 260
overlapping domains, 207

P
partitions, equivalence partitioning, 255
passionatetester.com, 324
Patanjali, 39
patterns, Model-View-Controller, 253
persistent states, 144
persistent storage issues, 260-261
persona, 50-51
platforms (test), 251-252
Poppendieck, Mary, 20
Poppendieck, Tom, 20
positive testing, 26-27
post-implementation tests, 17-18
preimplementation tests, 19-20

Wow! eBook <WoweBook.Com>

ptg

Index342

print queue
printing jobs from (workflow),

239-241
printing multiple documents to

(workflow), 237-238
process, 210
production bugs, 202
Progressive Insurance, 330-331
project charters, 39-42

Q-R
quality attribute requirements, 303-304
quality attribute tests, 117-119, 155

random events, testing systems with, 277
redundancy of tests, 196-197
regression testing, 202
Reinertsen, Don, 11
relationships

alternative representations, 167
entities and, 161-163
explained, 161
multiple relationships, 163-165

relative results, 260
relative story placement, 280
relative story values, 280
rental counts, computing, 129-130
rental fees

business rule tests, 96-100
category-based. See category-based

rental fees
rental rates table, 304
table of, 97-99
tables versus text, 185

rental history, 128-130
rental sequence, 113
requirements

constraints, 275
decoupling, 276
defined, 275
documenting, 275-276
explained, 27-28
high-level requirements, 42-46

feature acceptance criteria, 45-46
features list, 42-44

quality attribute requirements, 303-304
requirements tables, 300-303

separation of issues, 276-277
user interfaces as part of requirements

process, 255
results, relative, 260
retirement contributions case study

big picture test, 227-228
business value tracking, 223
context, 219-220
event table, 228
exception: discrepancies less than a

dollar, 223-224
exception: missing participant, 225
main course test

events, 220
expected output, 220
implementation issues, 222
separation of concerns, 222
setup, 220-221

state transitions, 228-230
two simultaneous exceptions, 225-227

reusable business rules, 158-159
Richardson, Jared, 327
risks, 214
Robot framework, 295

category-based rental fees, 296
Check-In CD test, 296
Check-Out CD test, 295
setup, 295

roles
explained, 49
role attributes, 49-50

root cause analysis, 201-202
rules. See business rules
running tests, 25-26, 78

S
Sabre reservation system, 252
Sam’s CD Rental. See CD rental example
Sandburg, Carl, 125, 310
Satir, Virginia, 213
scenarios, 57

conceptual flow, 65
Slim—Cucumber Style framework

scenario library, 291-294
story maps, 63-64
tests for exception scenarios, 83-87
use cases from user stories, 57-63

Wow! eBook <WoweBook.Com>

ptg

Index 343

SDD (story test-driven development), 5
separation of issues, 194-195, 276-277

Allowed to Reserve business rule
example, 125-128

rental history example, 128-130
retirement contributions case

study, 222
separating user interface from service,

157-158
sequence of tests, 193-194
servers, switching

context, 243
determining applications to run on

server, 244-248
test for, 244

send alert to administrator, 246-244
server goes down, 245

service provider tests
comparing implementations, 155-156
explained, 151
interface, 151-154
quality attribute tests, 155

services, separating user interface from,
157-158

setup
Fit framework, 284
retirement contributions case study,

220-221
Robot framework, 295
Slim—Cucumber Style framework,

291-292
Slim—Table Style framework, 287-291

Shalloway’s Law, 259
SHARES reservation system, 252
Shaw, George Bernard, 205
Shore, Jim, 42
signal processing case study

context, 229
developer tests, 233
sound levels, 229-232

simultaneous exceptions, 225-227
size of stories, 53-56
Slim—Cucumber Style framework, 291

category-based rental fees, 291
Check-In CD test, 291
Check-Out CD test, 291

scenario library, 291-294
setup, 291

Slim—Table Style framework, 287-291
category-based rental fees, 291
Check-In CD test, 288-290
Check-Out CD test, 288-289
header, 288
setup, 288

SMART, 40
software development, 9-10
sound levels, signal processing case study,

229-232
specifying multiple actions, 185-187
speed of feedback, 18
spell checking, 192
states

internal states, 142-144
separating state from display, 116-117
state tables, 139-142
state transitions, 139-142

retirement contributions case study,
228-230

state transition testing, 255
transient or persistent states, 144

Stevenson, William, 299
stories

acceptance criteria, 52
breaking down features into stories, 48
breaking up with acceptance tests,

95-96, 200
business rules. See business rules
business value. See business value
cross-story issues, 88
customer terms, 54
developer stories, 200, 281-282
developing, 51
explained, 47-48
INVEST criteria, 55-56
persona, 50-51
relative story placement, 280
relative story values, 280
roles

explained, 49
role attributes, 49-50

size of, 53-54
story estimates, 52

Wow! eBook <WoweBook.Com>

ptg

Index344

story maps, 63-64, 113-114
use cases, 57-63

story maps, 63-64, 113-114
story test-driven development (SDD), 5
Submit Charge story, 100-108
success stories, 324-332
switching servers

context, 243
determining applications to run on

server, 244-248
test for, 244

send alert to administrator, 245-246
server goes down, 245

T
tables

action tables, 75-76
calculation tables, 73-74
customer understood tables, 183-185
data tables, 74-75, 304
event tables, 137-139
quality attribute requirements, 303-304
requirements tables, 300-303
state tables, 139-142
tabular display tests, 147-151
versus text, 78, 185
user interface tests with, 299-300

tabular display tests, 147-151
TDD (test-driven development), 6
technical projects, 283
technical rules, test for, 244-248
test doubles, 111-112
test-driven approach, 306-307
Test-Driven Development by Example

(Beck), 305
test-driven development (TDD), 6
test evaluation

confirming environment, 193
fragility, 192-194
idempotence, 192
implementation issues, 197
points to remember, 197-198
separation of concerns, 194-195
spell checking, 192
test failure, 195
test redundancy, 196-197

test sequence, 193-194
understandability to customers,

191-192
test failure, 195
test frameworks

Cucumber, 296
explained, 283
Fit, 284

category-based rental fees, 287
Check-In CD, 286-287
Check-Out CD, 284-285
setup, 284

Robot, 295
category-based rental fees, 296
Check-In CD test, 296
Check-Out CD test, 295
setup, 295

Slim—Cucumber Style framework, 291
category-based rental fees, 291
Check-In CD test, 291
Check-Out CD test, 291
scenario library, 291-294
setup, 291

Slim—Table Style, 287-291
Check-In CD test, 288-290
Check-Out CD test, 288-289
header, 288
setup, 288

Slim—Table Style framework, 287-291
websites, 298

test platforms, 248-252
test presentation

complex data, 187
custom table forms, 188
customer understood tables, 183-185
specifying multiple actions, 185-187
tables versus text, 185

test redundancy, 196-197
test scripts, 31-33
test sequence, 193-194
test setup

ameliorating potential problems,
259-260

common setup, 257-259
persistent storage issues, 260-261
test order, 260

testability of stories, 57

Wow! eBook <WoweBook.Com>

ptg

Index 345

testing layers, 210-211
testing matrix, 23-24
testing systems with random events, 277
testing unit, 16
tests

acceptance tests. See acceptance tests
black box testing, 255-256
component tests, 25, 211
manual testing, 172
modules tests, 211
post-implementation tests, 17-18
preimplementation tests, 19-20
quality attribute tests, 117-119
regression testing, 202
unit tests

explained, 25, 211, 256
limitations, 88

workflow tests, 119-120
xUnit tests, 34-35

text, versus tables, 78, 185
time periods, calculating, 99
tracking business value, 223
transient states, 144
triads

explained, 15-16
triads for large systems, 167-169

triangle exercise, 314
types of tests, 23-25

U
ubiquitous language, 205-207
unavailable customers, 213
unit tests

explained, 25, 211, 256
limitations, 88

usability testing, 24, 116
use cases from user stories, 57-63
user interfaces

decoupling. See decoupling user
interface

external interfaces
creating acceptance tests for, 107
explained, 100-108
system context, 112-113

as part of requirements process, 255
user interface tests, 33-34, 93

uses of acceptance tests
breaking down stories, 200
degree of doneness, 199
developer stories, 200
estimation aid, 200

V
validation, local-part, 265-266
value of stories, 55
verification tests, 269
Visual Hospital Touchscreen

Solution, 325

W-X-Y-Z
Wake, Bill, 55
Walsh, Rob, 235
websites, test framework websites, 298
Weinberg, Jerry, 277
West, Mae, 257
Wilde, Oscar, 161
workflows

improving, 178-181
workflow tests, 119-120

library print server case study,
236-241

test sequence, 193-194

xUnit tests, 34-35

ZIP code lookup, 151-156

Wow! eBook <WoweBook.Com>

	Contents
	Introduction
	Part I: The Tale
	Chapter 1: Prologue
	Ways to Develop Software
	The Importance of Acceptance Tests
	System and Team Introduction
	Summary

	Chapter 2: Lean and Agile
	The Triad and Its Units
	Post-Implementation Tests
	Quick Feedback Better Than Slow Feedback
	Preimplementation Tests
	Lean and Agile Principles
	Summary

	Chapter 3: Testing Strategy
	Types of Tests
	Where Tests Run
	Test Facets
	Summary

	Chapter 4: An Introductory Acceptance Test
	A Sample Business Rule
	Implementing the Acceptance Tests
	Testing Process
	Summary

	Chapter 5: The Example Project
	The Charter
	High-Level Requirements
	Summary

	Chapter 6: The User Story Technique
	Stories
	INVEST Criteria
	Summary

	Chapter 7: Collaborating on Scenarios
	Use Cases from User Stories
	Story Map
	Conceptual Flow
	Communication
	Summary

	Chapter 8: Test Anatomy
	Triad Creates Tests
	Test Context
	Test Structure
	Tests with Example Values
	Test with Values in Text
	When and Where Tests Are Run
	Summary

	Chapter 9: Scenario Tests
	Tests for Exception Scenarios
	Tests for Business Rules
	Cross-Story Issues
	Don’t Automate Everything
	Multi-Level Tests
	User Interface Tests
	Check the Objectives
	Summary

	Chapter 10: User Story Breakup
	Acceptance Tests Help Break Up Stories
	Business Rule Tests
	A Story with a Business Rule
	Summary

	Chapter 11: System Boundary
	External Interfaces
	External Interface Tests
	What Is Real?
	Story Map of Activities
	Summary

	Chapter 12: Development Review
	The Rest of the Story
	Deployment Plans
	From Charter to Deliverable
	Summary

	Part II: Details
	Chapter 13: Simplification by Separation
	Complex Business Rules
	Rental History
	Summary

	Chapter 14: Separate View from Model
	Decouple the User Interface
	Decoupling Simplifies Testing
	Summary

	Chapter 15: Events, Responses, and States
	Events and an Event Table
	States and State Transitions
	Internal State or External Response
	Summary

	Chapter 16: Developer Acceptance Tests
	Component Acceptance Tests
	Summary

	Chapter 17: Decouple with Interfaces
	Tests for a Service Provider
	Separating User Interface from Service
	Reusable Business Rules
	Summary

	Chapter 18: Entities and Relationships
	Relationships
	Summary

	Chapter 19: Triads for Large Systems
	Large Systems
	When a Customer Test May Not Be Required
	What If There Are No Tests?
	Summary

	Part III: General Issues
	Chapter 20: Business Capabilities, Rules, and Value
	Business Capabilities
	Scenario Handling
	Business Rules Exposed
	A Different Business Value
	Summary

	Chapter 21: Test Presentation
	Customer Understood Tables
	Table Versus Text
	Specifying Multiple Actions
	Complex Data
	Custom Table Forms
	Summary

	Chapter 22: Test Evaluation
	Test Facets
	Test Sequence
	Test Conditions
	No Implementation Issues
	Points to Remember
	Summary

	Chapter 23: Using Tests for Other Things
	Uses of Acceptance Tests
	Tests as a Bug Report
	Summary

	Chapter 24: Context and Domain Language
	Ubiquitous Language
	Two Domains
	Summary

	Chapter 25: Retrospective and Perspective
	Recap
	What’s the Block?
	Benefits
	Summary

	Part IV: Case Studies
	Chapter 26: Case Study: Retirement Contributions
	Context
	The Main Course Test
	Business Value Tracking
	One Exception
	Another Exception
	Two Simultaneous Exceptions
	The Big Picture
	Event Table
	State Transition Table
	Summary

	Chapter 27: Case Study: Signal Processing
	It’s Too Loud
	Sound Levels
	Developer Tests
	Summary

	Chapter 28: Case Study: A Library Print Server
	The Context
	A Workflow Test
	Summary

	Chapter 29: Case Study: Highly Available Platform
	Context for Switching Servers
	Test for Switching Servers
	Test for Technical Rule
	Summary

	Part V: Technical Topics
	Chapter 30: How Does What You Do Fit with ATDD?
	Test Platforms
	Internal Design from Tests
	Device Testing
	Starting with User Interfaces
	Black Box Testing
	Unit Testing
	Summary

	Chapter 31: Test Setup
	A Common Setup
	Some Amelioration
	Test Order
	Persistent Storage Issues
	Summary

	Chapter 32: Case Study: E-Mail Addresses
	Context
	Breaking Down Tests
	Summary

	Part VI : Appendices
	Appendix A: Other Issues
	Context
	Customer Examples
	Requirements and Acceptance Tests
	Testing Systems with Random Events
	The Power of Three
	Summary

	Appendix B: Estimating Business Value
	Business Value
	Developer Stories
	Summary

	Appendix C: Test Framework Examples
	The Examples
	Fit Implementation
	Slim—Table Style
	Slim—Cucumber Style
	Robot
	Cucumber
	Test Frameworks
	Summary

	Appendix D: Tables Everywhere
	User Interface Tests with Tables
	Requirement Tables
	Quality Attribute Requirements
	Data Tables
	Summary

	Appendix E: Money with ATDD
	The Context
	The Original Tests
	The Acceptance Test Approach
	Summary

	Appendix F: Exercises
	Calculator
	More Exercises

	References
	Epilogue
	Index
	A
	B
	C
	D
	E
	F
	G-H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W-X-Y-Z

