Cumulative Sum and Exponentially Weighted Moving Average Control Charts

Alternative Control Charts to Shewhart Charts

- Control charts presented so far have been Shewhart control charts.
 - Uses information about the process contained in the last plotted point.
 - Shewhart charts are relatively insensitive to small process shifts, e.g. shifts < 1.5σ.</p>
- Two alternative control charts for process monitoring.
 - CUSUM Cumulative-sum control chart.
 - EWMA Exponentially Weighted Moving Average control chart.

61	(a)	(b)	(c)
Sample, <i>i</i>	X _i	$x_i - 10$	$C_i = (x_i - 10) + C_{i-1}$
1	9.45	-0.55	-0.55
2	7.99	-2.01	-2.56
3	9.29	-0.71	-3.27
4	11.66	1.66	-1.61
5	12.16	2.16	0.55
6	10.18	0.18	0.73
7	8.04	-1.96	-1.23
8	11.46	1.46	0.23
9	9.20	-0.80	-0.57
10	10.34	0.34	-0.23
11	9.03	-0.97	-1.20
12	11.47	1.47	0.27
13	10.51	0.51	0.78
14	9.40	-0.60	0.18
15	10.08	0.08	0.26
16	9.37	-0.63	-0.37
17	10.62	0.62	0.25
18	10.31	0.31	0.56
19	8.52	-1.48	-0.92
20	10.84	0.84	-0.08
21	10.90	0.90	0.82
22	9.33	-0.67	0.15
23	12.29	2.29	2.44
24	11.50	1.50	3.94
25	10.60	0.60	4.54
26	11.08	1.08	5.62
27	10.38	0.38	6.00
28	11.62	1.62	7.62
29	11.31	1.31	8.93
30	10.52	0.52	9.45

Example

Alternative Control Charts to Shewhart Charts

- Two alternative control charts for process monitoring.
 - CUSUM Cumulative-sum control chart.
 - EWMA Exponentially Weighted Moving Average control chart.

CUSUM Control Chart

- More sensitive to small process shifts than Shewart control charts.
- CUSUM can be used to monitor
 - process mean
 - defectives
 - defects
 - variance
- **CUSUM** can have sample size $n \ge 1$

CUSUM Control Chart

- Incorporates all the information in the sequence of sample values by
 - Monitoring the cumulative sums of the deviations of the sample values from a target value, μ₀

$$C_i = \sum_{j=1}^i (\overline{x}_j - \mu_0)$$

Example

 $\Box C_{i} - CUSUM \text{ sample statistic } C_{i} = \sum_{j=1}^{i} (x_{j} - \mu_{0})$ since n=1.

Target
$$\mu_0 = 10$$

$$C_{i} = \sum_{j=1}^{i} (x_{j} - 10) = (x_{j} - 10) + \sum_{j=1}^{i-1} (x_{j} - 10) = (x_{j} - 10) + C_{i-1}$$

Example

Obs i	x _i	$(x_i - \mu_0)$	$(x_i - 10) + C_{i-1}$
1	9.45	-0.55	-0.55
2	7.99	-2.01	-0.55 - 2.01 = -2.56
3	9.29	-0.71	-2.56 - 0.71 = -3.27
4	11.66	1.66	-3.27 + 1.66 = -1.61
5	12.16	2.16	-1.61 + 2.16 = 0.55

 \Box If the process remains in-control, C_i remains near 0.

Table 8-1	Data for the Cu	ısum Example	
	(a)	(b)	(c)
Sample, i	x _i	$x_i - 10$	$C_i = (x_i - 10) + C_{i-1}$
1	9.45	-0.55	-0.55
2	7.99	-2.01	-2.56
3	9.29	-0.71	-3.27
4	11.66	1.66	-1.61
5	12.16	2.16	0.55
6	10.18	0.18	0.73
7	8.04	-1.96	-1.23
8	11.46	1.46	0.23
9	9.20	-0.80	-0.57
10	10.34	0.34	-0.23
11	9.03	-0.97	-1.20
12	11.47	1.47	0.27
13	10.51	0.51	0.78
14	9.40	-0.60	0.18
15	10.08	0.08	0.26
16	9.37	-0.63	-0.37
17	10.62	0.62	0.25
18	10.31	0.31	0.56
19	8.52	-1.48	-0.92
20	10.84	0.84	-0.08
21	10.90	0.90	0.82
22	9.33	-0.67	0.15
23	12.29	2.29	2.44
24	11.50	1.50	3.94
25	10.60	0.60	4.54
26	11.08	1.08	5.62
27	10.38	0.38	6.00
28	11.62	1.62	7.62
29	11.31	1.31	8.93
30	10.52	0.52	9.45

Figure 8-2 Plot of the cumulative sum from column (c) of Table 8-1.

Not a control chart-No control limits have been established.

Tabular CUSUM Control Chart

 \square $x_i \sim N(\mu_0, \sigma)$ - quality characteristic

- The tabular CUSUM works by compiling the statistics:
 - C^+ = accumulated deviations above μ_0
 - C^- = accumulated deviations below μ_0
 - Record following values in a table (for n=1):

$$C_{i}^{+} = \mathbf{m} \mathbf{a} \mathbf{x} \begin{bmatrix} 0, x_{i} - (\mu_{0} + K) + C_{i-1}^{+} \end{bmatrix}$$
$$C_{i}^{-} = \mathbf{m} \mathbf{a} \mathbf{x} \begin{bmatrix} 0, (\mu_{0} - K) - x_{i} + C_{i-1}^{-} \end{bmatrix}$$
where starting values are

 $C_0^+ = C_0^- = 0$

Tabular CUSUM Control Chart

 \Box Let μ_1 = out-of-control value then

$$K = \frac{\left|\mu_1 - \mu_0\right|}{2}$$

K is called the <u>reference value</u>, and it is halfway between the target μ₀, and the out-of-control value.

□ With the μ_1 - μ_0 difference expressed in standard deviation units,

$$\mu_{1} = \mu_{0} + \delta \sigma \implies \delta \sigma = |\mu_{1} - \mu_{0}|$$
$$K = \frac{\delta \sigma}{2}$$

Tabular CUSUM Control Chart

- \Box C_i^+ and C_i^- accumulate only deviations from the target that are greater than *K*.
- □ If the deviation is less than K, C_i^+ and C_i^- are zero.

•••••• EXAMPLE 8-1 ••••••

A Tabular Cusum

We will demonstrate the calculations for the tabular cusum by using the data from Table 8-1. Recall that the target value is $\mu_0 = 10$, the subgroup size is n = 1, the process standard deviation is $\sigma = 1$, and suppose that the magnitude of the shift we are interested in detecting is $1.0\sigma = 1.0(1.0) = 1.0$. Therefore, the out-of-control value of the process mean is $\mu_1 = 10 + 1 = 11$. We will use a tabular cusum with $K = \frac{1}{2}$ (because the shift size is 1.0σ and $\sigma = 1$) and H = 5 (because the recommended value of the decision interval is $H = 5\sigma = 5(1) = 5$).

Table 8-2 presents the tabular cusum scheme. To illustrate the calculations, consider period 1. The equations for C_i^+ and C_i^- are $\mathcal{M} \to \mathcal{K}$

$$C_1^+ = \max\left[0, x_1 - 10.5 + C_0^+\right]$$
 $\mathcal{K} = \frac{1}{2}$

and

$$M_0 - K \qquad \qquad \gamma_1 = 9.45$$
$$C_1^- = \max \left[0.9.5 - x_1 + C_0^- \right] \qquad \qquad \gamma_2 = 7.99$$

since K = 0.5 and $\mu_0 = 10$. Now $x_1 = 9.45$, so since $C_0^+ = C_0^- = 0$, $7_3 = 9.29$

$$C_1^+ = \max[0, 9.45 - 10.5 + 0] = 0$$

and

$$C_1^- = \max[0, 9.5 - 9.45 + 0] = 0.05$$

For period 2, we would use

$$C_2^+ = \max[0, x_2 - 10.5 + C_1^+]$$
$$= \max[0, x_2 - 10.5 + 0]$$

and

$$C_2^- = \max[0, 9.5 - x_2 + C_1^-]$$
$$= \max[0, 9.5 - x_2 + 0.05]$$

Since $x_2 = 7.99$, we obtain

$$C_2^+ = \max[0, 7.99 - 10.5 + 0] = 0$$

and

$$C_2^- = \max[0, 9.5 - 7.99 + 0.05] = 1.56$$

		(a)			(0)		
Period i x_i	$x_i - 10.5$	C_i^+	N^+	$9.5 - x_i$	C_i^-	N^{-}	
1 9.45	-1.05	0	0	0.05	0.05	1	Bar
2 7.99	-2.51	0	0	1.51	1.56	2	
3 9.29	-1.21	0	0	0.21	1.77	3	
4 11.66	1.16	1.16	1	-2.16	0	0	an
5 12.16	1.66	2.8	2	-2.66	0	0	
6 10.18	-0.32	2.50	3	-0.68	0	0	Va
7 8.04	-2.46	0.04	4	1.46	1.46	1	
8 11.46	0.96	1.00	5	-1.96	0	0	avi
9 9.20	-1.3	\odot	0	0.30	0.30	1	. 1.
>10 10.34	-0.16		0	-0.84	0	0	_ 70
11 9.03	-1.47	0	0	0.47	0.47	1	
12 11.47	0.97	0.97	1	-1.97	0	0	10 0
13 10.51	0.01	0.98	2	-1.01	0	0	<pre></pre>
14 9.40	-1.10	\bigcirc	0	0.10	0.10	1	Conv
▶ 15 10.08	-0.42	0	0	-0.58	0	0	
16 9.37	-1.13	0	0	0.13	0.13	1	~+
17 10.62	0.12	0.12	1	-1.12	0	0	Ci
18 10.31	-0.19	0	0	-0.81	0	0	.//
19 8.52	-1.98	0	0	0.98	0.98	1	will
20 10.84	0.34	0.34	1	-1.34	0	0	
21 10.90	0.40	0.74	2	-1.40	0	0	zero
22 9.33	-1.17	0	0	0.17	0.17	1	
23 12.29	1.79	1.79	1	-2.79	0	0	is wi
24 11.50	1.00	2.79	2	-2.00	0	0	
25 10.60	0.10	2.89	3	-1.10	0	0	Not
26 11.08	0.58	3.47	4	-1.58	0	0	· .+
27 10.38	-0.12	3.35	5	-0.88	0	0	Cin
28 11.62	1.12	4.47	6	-2.12	0	0	•••
29 11.31	0.81	5.28	7	-1.81	0	0	

Control Limits

- \Box *H* Called the <u>decision interval</u>.
- □ If C_i^+ or C_i^- exceed the decision interval, H, the process is considered out-of-control.
- Rule of thumb value for H
 - Choose *H* to be five times the process standard deviation, i.e., $H = 5\sigma$.
- Counters N^+ and N^- record the number consecutive periods the CUSUM C_i^+ and C_i^- are above zero.
 - The counters can be used to indicate when a process shift most likely occurred.

CUSUM Status Chart

□ A control chart showing the control limits (defined by H) and C_i^+ C_i^-

CUSUM Status Chart

A control chart showing the control limits (defined by H) and C_i^+ C_i^-

Intuition of the CUSUM Chart

- A weighted sum of all past observations (deviations from a constant) where the weighting is random.
- 2. Each time C+ or C- is zero, the value monitored "restarts".

			(a)			(b)	
Period i	x_i	$x_i - 10.5$	C_i^+	N^+	$9.5 - x_i$	C_i^-	
1	9.45	-1.05	0	0	0.05	0.05	
2	7.99	-2.51	0	o weit	1.51	1.56	
3	9.29	-1.21	0	0	0.21	1.77	
4	11.66	1.16	1.16	1	-2.16	0	
5	12.16	1.66	2.82	2	-2.66	D 0	
6	10.18	-0.32	2.50	guch "	-0/68	(PAI	h
7	8.04	-2.46	0.04	4	1.46	1.46	
8	11.46	0.96	1.00	No V	-1.96	0	
9	9.20	-1.3	0	0	0.30	0.30	
10	10.34	-0.16	0	0	-0.84	0	
11	9.03	-1.47	0	0	0.47	0.47	
12	11.47	0.97	0.97 2	alle	wither	0	
13	10.51	0.01	0.98	P 2	-1.01	0	
14	9.40	-1.10	0	0	0.10	0.10	
15	10.08	-0.42	0	0	-0.58	0	
16	9.37	-1.13	0	0	0.13	0.13	
17	10.62	0.12	0.12	1	-1.12	0	
18	10.31	-0.19	0	0	-0.81	0	
19	8.52	-1.98	0	0	0.98	0.98	
20	10.84	0.34	0.34	1	-1.34	0	
21	10.90	0.40	0.74	2	-1.40	0	
22	9.33	-1.17	0	0	0.17	0.17	
23	12.29	1.79	1.79	1	-2.79	0	
24	11.50	1.00	2.79	2	-2.00	0	
25	10.60	0.10	2.89	3	-1.10	0	
26	11.08	0.58	3.47	4	-1.58	0	
27	10.38	-0.12	3.35	5	-0.88	0	
28	11.62	1.12	4.47	6	-2.12	0	
29	11.31	0.81	5.28	7	-1.81	0	
30	10.52	0.02	5 30	8	-1.02	0	

- The target value of molecular weight is 1050 and the process standard deviation is thought to be about 25.
 - Set up a tabular CUSUM for the mean of this process. Design it so that to detect shifts of one standard deviation from the target.
 - Is the estimate of σ a good estimate?

	$N_0 = 1050$ $K = \frac{1}{2}B = \frac{1}{2} + 25 = 12.5$ H=50								
	H=5+25								
		0-K=	1057.5 Du	abla			2	= 125	
	EXdIII	pie	- Pr	ODIE		2-T	C		
		-		Cit					
	Obser. #	Weight	7:1012.5	Ci+	N+	10375 -Xi	C_{c}^{-}	A)-	
	1	1045	-17.5	0	0	- 7.5	0	0	
	2	1055	-7.5	0	0	-17.5	Ο	0	
	3	1037	-25-5	0	D	0.5	0.5	1	
	4	1064	1.5	1.5	1	-26.5	0	0	
	5	1095	32.5	34	2	-57.5	0	0	
	6	1008	-57.5	0	0				
	7	1050							
	8	1087							
	9	1125							
	10	1146				_			
	11	1139							-
	12	1169	$\eta =$	~					
	13	1151	•						
	14	1128							-
	15	1238							
	10	1125							
	10	1103							
	Ið	1100							
,	19	1140							
/	20								

Obser. #	Weight	xi-1062.5	C+	N+	xi-1037.5	C-	N-
1	1045	-17.5	0	0	-7.5	0	0
2	1055	-7.5	0	0	-17.5	0	0
3	1037	-25.5	0	0	0.5	0.5	1
4	1064	1.5	1.5	1	-26.5	0	0
5	1095	32.5	34	2	-57.5	0	0
6	1008	-54.5	0	0	29.5	29.5	1
7	1050	-12.5	0	0	-12.5	17	2
8	1087	24.5	24.5	1	-49.5	0	0
9	1125	62.5	87	2	-87.5	0	0
10	1146	83.5	170.5	3	-108.5	0	0
11	1139	76.5	247	4	-101.5	0	0
12	1169	106.5	353.5	5	-131.5	0	0
13	1151	88.5	442	6	-113.5	0	0
14	1128	65.5	507.5	7	-90.5	0	0
15	1238	175.5	683	8	-200.5	0	0
16	1125	62.5	745.5	9	-87.5	0	0
17	1163	100.5	846	10	-125.5	0	0
18	1188	125.5	971.5	11	-150.5	0	0
19	1146	83.5	1055	12	-108.5	0	0
20	1167	104.5	1159.5	13	-129.5	0	0

Obser. #	Weight	MR
1	1045 🕤	
2	1055	10
3	1037	1 8
4	1064	27
5	1095	31
6	1008	87
7	1050	42
8	1087	37
9	1125	38
10	1146	21
11	1139	7
12	1169	30
13	1151	18
14	1128	23
15	1238	110
16	1125	113
17	1163	38
18	1188	25
19	1146	42
20	1167	21

 $\frac{5}{6} = \frac{MR}{d_2} = \frac{38.842}{1.128}$ $\int_{0^{-}} = 34.43$

=> 25 for 5 is too low

avg. MR 38.84211

Estimate of New Shifted Process Mean

$$\hat{\mu} = \begin{cases} \mu_0 + K + \frac{C_i^+}{N^+} & \text{if } C_i^+ > H \\ \mu_0 - K - \frac{C_i^-}{N^-}, & \text{if } C_i^- > H \end{cases}$$

 \Box Use this estimate to bring process back to the target value μ_0

□ In the first example H=5 and C_{29}^+ = 5.28 □ New process average estimate is

$$\hat{\mu} = \mu_0 + K + \frac{C_{29}^+}{N^+} = 10 + 0.5 + \frac{5.28}{7} = 11.25$$

First Example

□ A control chart showing the control limits (defined by H) and C_i^+ C_i^-

Recommendations for CUSUM Charts

- □ Let $H = h\sigma$ and $K = k\sigma$ where σ is the process standard deviation.
- □ Using h = 4 or h = 5 and k = 1/2 provides a CUSUM with good ARL properties.
- □ For n>1 replace x_i with x_i bar and σ with $\sigma_{\overline{x}} = \sigma / \sqrt{n}$

Standardized CUSUM

CUSUM charts can be constructed for standardized observations.

 \Box Can use k=1/2, h= 4 or 5 for all charts.

- The target value of molecular weight is 1050 and the process standard deviation is thought to be about 25.
 - Set up a standardized CUSUM for the mean of this process. Design it so that to detect shifts of one standard deviation from the target.

Obser. #	Weight	stawt.	stawt -0.5	-stawt-05	C+	N7	
1	1045	-0.2	-0.7	-0-3	0	0	
2	1055	0.2	-0.3	-0.7	0	0	
3	1037	-0.52	-1.02	0.02	0	0	
4	1064	0.56	0.06	-1.06	0.06	1	
5	1095						
6	1008						
7	1050						
8	1087						
9	1125						
10	1146						
11	1139						
12	1169						
13	1151						
14	1128						
15	1238						
16	1125						
17	1163						
18	1188						
19	1146						
20	1167						

Obser. #	Wt.	Std. Wt.	C+	N+	C-	N-
1	1045	-0.2	0	0	0	0
2	1055	0.2	0	0	0	0
3	1037	-0.52	0	0	0.02	1
4	1064	0.56	0.06	1	0	0
5	1095	1.8	1.36	2	0	0
6	1008	-1.68	0	0	1.18	1
7	1050	0	0	0	0.68	2
8	1087	1.48	0.98	1	0	0
9	1125	3	3.48	2	0	0
10	1146	3.84	6.82	3	0	0
11	1139	3.56	9.88	4	0	0
12	1169	4.76	14.14	5	0	0
13	1151	4.04	17.68	6	0	0
14	1128	3.12	20.3	7	0	0
15	1238	7.52	27.32	8	0	0
16	1125	3	29.82	9	0	0
17	1163	4.52	33.84	10	0	0
18	1188	5.52	38.86	11	0	0
19	1146	3.84	42.2	12	0	0
20	1167	4.68	46.38	13	0	0

EWMA - Exponentially Weighted Moving Average Control Chart

- The EWMA control chart is good for detecting small shifts.
- EWMA can be used to monitor process mean or variance.

 $z_i = \lambda x_i + (1 - \lambda) z_{i-1}$

 $Z_{a} = M_{a}$

Zo=M Use estimate for $\overline{z_0} = \hat{\mu}$ or a target value $z_0 = \mu_0$

 λ is weighting factor, where 0 < λ < 1.

Example

- A process has a mean that is estimated to be 14.31. The first three observations of the process quality measure are shown in the table.
- Compute the EWMA statistic, z_i , with weight $\lambda = 0.2$.

Obs i	x _i	EWMA
		$z_i = \lambda x_i + (1 - \lambda) z_{i-1}$
1	14.56	$z_1 = (0.2)(14.56) + (0.8)(14.31)$
		= 14.36
2	13.88	$z_2 = (0.2)(13.88) + (0.8)(14.36)$
		€ 14.26
3	13.98	$z_3 = (0.2)(13.98) + (0.8)(14.26)$
		= 14.21

EWMA - Exponentially Weighted Moving Average Control Chart

The EWMA z_i is a weighted average of all observations since

$$z_{i} = \lambda x_{i} + (1 - \lambda) z_{i-1} = \lambda x_{i} + (1 - \lambda) [\lambda x_{i-1} + (1 - \lambda) z_{i-2}]$$
$$= \lambda \sum_{i=0}^{i-1} (1 - \lambda)^{i} x_{i-j} + (1 - \lambda)^{i} z_{0}$$

and the weights sum to one.

$$=\lambda \sum_{j=0}^{i-1} (1-\lambda)^{j} + (1-\lambda)^{i} = \lambda \left[\frac{1-(1-\lambda)^{i}}{1-(1-\lambda)} \right] + (1-\lambda)^{i} = 1$$

Since $1 + r + r^{2} + \dots + r^{n} = \frac{(1+r^{n+1})}{1-r}$

EWMA Control Limits

- □ Use a target value μ_0 for the centerline (may be a desired target or estimated process mean).
- Computing σ_z . Since the x_i observations are assumed independent with variance σ^2 :

$$(\sigma_{j}^{2}) = \sum_{j=0}^{i-1} \lambda^{2} (1-\lambda)^{2j} \sigma^{2} = \lambda^{2} \sigma^{2} \sum_{j=0}^{i-1} [(1-\lambda)^{2}]^{j} = \lambda^{2} G^{2} \left(\frac{1-(l-\lambda)^{2}}{1-(l-\lambda)^{2}} \right)$$

$$(1-\lambda)^{2} = \lambda^{2} G^{2} \left(\frac{1-(l-\lambda)^{2}}{1-(l-\lambda)^{2}} \right)$$

Can estimate σ_{z_i} from the data if needed. $= G^2 [1 - (1 - 2)^{2i}]$

$$\hat{\sigma}_{z} = \hat{\sigma} \sqrt{\frac{\lambda}{(2-\lambda)}} \left[1 - (1-\lambda)^{2i} \right]$$

$$\hat{\sigma} = \overline{M R} / d$$

EWMA Control Limits

Control Limits and centerline

$$UCL = \mu_0 + L\sigma_{\sqrt{\frac{\lambda}{(2-\lambda)}}} [1 - (1-\lambda)^{2i}]$$

Centerline =
$$\mu_0$$

 $LCL = \mu_0 - L\sigma \sqrt{\frac{\lambda}{(2-\lambda)} [1 - (1-\lambda)^{2i}]}$

- □ Limits change as a function of *i*.
- **Typical values for** λ and *L*:
 - **0.05** $\leq \lambda \leq 0.25$ and $2.6 \leq L \leq 3.054$

EWMA Control Limits

Steady state control limits and centerline.

$$UCL = \mu_0 + L\sigma_{\sqrt{\frac{\lambda}{(2-\lambda)}}}$$

Centerline = μ_0

$$LCL = \mu_0 - L\sigma_{\sqrt{\frac{\lambda}{(2-\lambda)}}}$$

 $[1-(1-\lambda)^{2i}]$ approaches 1 as *i* gets larger.

••••• EXAMPLE 8-2

We will apply the EWMA control chart with $\lambda = 0.10$ and L = 2.7 to the data in Table 8-1. Recall that the target value of the mean is $\mu_0 = 10$ and the standard deviation is $\sigma = 1$. The calculations for the EWMA control chart are summarized in Table 8-9, and the control chart (from Minitab) is shown is Fig. 8-7.

To illustrate the calculations, consider the first observation $x_1 = 9.45$ The first value of the EWMA is

$$z_1 = \lambda x_1 + (1 - \lambda) z_0$$

= 0.1(9.45) + 0.9(10)
= 9.945

Therefore, $z_1 = 9.945$ is the first value plotted on the control chart in Fig. 8-7. The second value of the EWMA is $\chi_2 = 7.99$

$$z_2 = \lambda x_2 + (1 - \lambda) z_1$$

= 0.1(7.99) + 0.9(9.945)
= 9.7495

Period 1 Control Limits:

$$UCL = \mu_0 + I \sigma \sqrt{\frac{\lambda}{(2-\lambda)} \left[1 - (1-\lambda)^{2i}\right]}$$
$$= 10 + 2.7(1) \sqrt{\frac{0.1}{(2-0.1)} \left[1 - (1-0.1)^{2(1)}\right]}$$
$$= 10.27$$

$$LCL = \mu_0 - L\sigma \sqrt{\frac{\lambda}{(2-\lambda)} \left[1 - (1-\lambda)^{2i}\right]}$$
$$= 10 - 2.7(1) \sqrt{\frac{0.1}{(2-0.1)} \left[1 - (1-0.1)^{2(1)}\right]}$$
$$= 9.73$$

Steady-State Control Limits:

UCL =
$$\mu_0 + I\sigma \sqrt{\frac{\lambda}{(2-\lambda)}}$$

= 10 + 2.7(1) $\sqrt{\frac{0.1}{(2-0.1)}}$
= 10.62

m

LCL =
$$\mu_0 - I\sigma \sqrt{\frac{\lambda}{(2-\lambda)}}$$

= 10 - 2.7(1) $\sqrt{\frac{0.1}{(2-0.1)}}$
= 9.38

Figure 8-7 The EWMA control chart for Example 8-2.

EWMA Control Charts – Other Info

- EWMA control charts are insensitive to departures from normality of the quality measure.
- When rational subgroups of size n>1 are used replace

 x_i with \overline{x}_i and σ with $\sigma_{\overline{x}} = \sigma / \sqrt{n}$

Problem 8-17 Data

SAMPLE	l	2	3	4	 	
-Obser #	Weight		-	•		
1	1045	1050	1865	1052		
2	1055		r			
3	1037					
4	1064					
5	1095					
6	1008		V	V		
7	1050	V				
8	1087					
9	1125					
10	1146					
11	1139					
12	1169					
13	1151					
14	1128					
15	1238					
16	1125					
17	1163					
18	1188					
19	1146					
20	1167					

THANK YOU