

- Understand quality fundamentals.
- Differentiate between QC, QA, and TQM.
- Learn quality improvement tools.
- Learn SPC and reliability.
- Learn Cost of Quality.
- Understand ISO 9000:2000 QMS.
- Become aware of Excellence Models.
- Apply quality to oneself & organization.

Meaning Of "Statistical Quality Control					
Statistical	With the help of numbers or data				
Quality	We study the characteristics of the process				
Control	In order to make it behave the way we want it to behave				

Quality Costs (1/4)

- Prevention Costs
 - Costs associated with efforts in design and manufacturing that are directed toward the prevention of nonconformance.
- Examples
 - Quality planning and engineering.
 - New products review.
 - Product/Process design

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><section-header>

Categories of Data						
Category	Meaning	Example				
Nominal	Data is a code.	0=Defective, 1=Non-defective.				
Ordinal	Data is a rank. Data order is important.	5=A, 4=B, 3=C, 1=D, 0=E.				
Interval	Data is a measure; no true zero.	Temperature.				
Ratio	Data is a measures; there is a true zero.	Weight.				

Туре	Meaning	Example
Continuous	Infinite values on an interval.	Temperature, Weight.
Discrete	Finite values on an interval.	Student letter grade, Traffic-light color.

 Calculate the sample range, variance, standard deviation and coefficient of variation.

- <u>Set A</u>: 20, 20, 18, 17, 15, 17, 14, 17, 12, 10
- Set B: 10, 20, 12, 13, 13, 16, 17, 12, 13, 17, 22

Check	sheet
Wednesday	track defects or collect data
Invoicing errors	
Wrong Account	
Wrong Amount	
Accounts payable errors	
Wrong Account	
Wrong Amount	

Pareto Analysis (Example, Step 2)								
% of each problem was calculated , and the result put in descending order in the following table								
Problems Suppliers				%	Accum.			
	Α	B	С	D	TOTAL		%	
Late Deliveries	3	4	5	6	18	36%	36%	
Short Delivery	2	5	3	3	13	26%	62%	
Damaged Material	2	5	1	2	10	20%	82%	
Incorrect Invoice	3	4	0	2	9	18%	100%	
Totals	10	18	9	13	50	100 %	100%	

- Acceptance Sampling
- Statistical Process Control Charts (SPC)
- Design of Experiments
- Process Capability studies

Establish X-bar and R Charts
$$\sigma_{\overline{x}} = \sigma / \sqrt{n}$$
 $UCL = \overline{X} + z\sigma_{\overline{x}}$ $CL = \overline{\overline{X}}$ $LCL = \overline{X} + z\sigma_{\overline{x}}$ $UCL = \overline{X} + A_2\overline{R}$ $UCL = D_4\overline{R}$ $UCL = \overline{R}$ $UCL = \overline{R}$

17/03/1431

17/03/1431

17/03/1431

Preventive Costs

- 1. Marketing/customer/user
- 2. Product/Service/Design development
- 3. Purchasing
- 4. Operations
- 5. Quality Administration
- 6. Others (Rent, Telephone, Travel, etc.)

Internal Failure Costs

- 1. Product Design Failure Costs
- 2. Purchasing Failure Costs
- 3. Operations Failure Costs

17/03/1431

Herzberg Motivation Model		
Hygiene Factors	Motivators	
Money	Sense of achievement	
Status	Acknowledgement	
Work conditions	Authorities	
Relation with boss	Responsibilities	
Relation with peers	Growth potential	
Organization politics	Job pleasure	

Training		
Identify Needs -	→ Train –	→ Evaluate
Current knowledge, skills, & attitude Desired knowledge, skills, & attitude Gap Plan	 On-the-job vs. off- the-job Methods: coaching, lecturing, e-learning 	 Did you like it? Did you learn it? Did you apply it? Was it effective?

- The USA Quality Award (BNQA), 1987
- European Quality Award (EQA), 1988
- Australian Quality Award (AQA), 1993
- Canadian Quality Award (CQA), 1984
- The Japanese Quality Award (The Deming Prize), 1951

- Customer Results 20%
- Key Performance Results 15%
- Processes 14%
- Leadership 10%
- People 9%
- People Results 9%
- Partnership & Resources 9%
- Policy & Strategy 8%
- Society Results 6%

- People 20%
- Quality of process, product, and service 20%
- Customer Focus 18%
- Leadership 14%
- Organizational Performance 12%
- Strategy & Policy 8%
- Information & Analysis 8%

BNQA Overview

- Is named after Malcolm Baldridge!
- Is a model for Performance Excellence
- The NIST and ASQ manage the program
- The model is revised annually
- 3 Performance Excellence booklets:
 - 2001 Business Criteria
 - 2001 Education Criteria
 - 2001 Health Care Criteria

17/03/1431

REMEMBER

In general, Excellence and Quality Models such as BNQA, EQA, and ISO tell you **what** is excellence. They do not tell you **how** to achieve excellence.

- Massive bottom-line benefits
- Many BNQA winners (e.g. GE, Motorola)
- Exponential increase in the number of fortune global 500 companies adopting six sigma
 - 1985-1990: 2 (Motorola & IBM)
 - 1991-1995: 6 (GE, Allied Signal, Kodak, etc.)
 - 1996-1999: 31 (Dow Chemicals, DuPont, Sony, American Express, Johnson&Johnson, Raytheon, United Technologies, US Postal Service, etc.)

rocesses Capabilities				
Spec. Distance from µ	One-sided Spec.	Two-sided Spec.		
Less than 3σ	Incapable Process	Incapable Process		
3.0σ	1,350	2,700		
4.5σ	1.7	3.4		
6.0σ	0.001	0.002		

- Define ... Determine project (Plan)
- Measure Determine current (Do)
- Analyze Find solutions (Do)
- Implement Execute (Do)
- Control (Check & Act)

The Training Pyramid			
	<u>Rank</u>	Main Role	
*****	Employees	Task improvement	
****	Supervisors	Lead small IPs	
* **	Managers	Lead major, cross- functional IPs	
* *	In-house Experts	Train, provide expertise	

- 'Real' top management commitment
- Goals with identical improvement rates
- Common quality measurement techniques
- Common language throughout the organization
- Systematic training
- Goal-directed incentives for people