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Preface

The objective of this book is to expose the reader to the various steps in the
statistical quality control methodology. It is assumed that the reader has a
basic understanding of probability and statistics taught at the junior level in
colleges. The book is based on materials taught in a graduate-level course on
statistical quality control in the Department of Industrial and Manufacturing
Engineering at The Pennsylvania State University. The material discussed in
this book can be taught in a 15-week semester and consists of nine chapters
written in a logical manner. Some of the material covered in the book is
adapted from journal publications. Sufficient examples are provided to illus-
trate the theoretical concepts covered. 
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colleague and friend, Professor Tom M. Cavalier of The Pennsylvania State
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are responsible for the successful completion of this book. I owe a lot to
Professor Murray Smith of the University of Auckland, New Zealand, for his
ungrudging help in generating the tables used in this book. My heartfelt
thanks go to Hsu-Hua (Tim) Lee, who worked as my manager and helped me
tremendously to prepare the manuscript; I would have been completely lost
without his help. I would also like to thank Nicholas Smith for typing part of
the manuscript and preparing the figures. Thanks are also due to Cecilia
Devasagayam and Himanshu Gupta for their help in generating some of the
end-of-chapter problems. I thank the numerous graduate students who took
this course during the past few years, especially Daniel Finke, for their excel-
lent suggestions for improvement.

A manuscript cannot be converted into a textbook without the help of a
publisher. I would like to express my gratitude to CRC Press for agreeing
to publish this book. My sincere thanks go to Cindy Renee Carelli, Engi-
neering Acquisitions Editor at CRC Press, for her support in publishing this
book. She was always willing to answer my questions and help me; publish-
ers need persons like her to help authors. I also thank the anonymous
reviewer of an earlier version of this manuscript for the excellent suggestions
that led to substantial improvements of this manuscript. 

Special gratitude and appreciation go to my wife, Emeline, and my children,
Jean and Naveen, for the role they play in my life to make me a complete
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1
Introduction

Quality can be defined in many ways, ranging from “satisfying customers’
requirements” to “fitness for use” to “conformance to requirements.” It is
obvious that any definition of quality should include customers, satisfying
whom must be the primary goal of any business. Experience during the last
two decades in the U.S. and world markets has clearly demonstrated that
quality is one of the most important factors for business success and growth.
Businesses achieving higher quality in their products enjoy significant
advantage over their competition; hence, it is important that the personnel
responsible for the design, development, and manufacture of products
understand properly the concepts and techniques used to improve the qual-
ity of products. Statistical quality control provides the statistical techniques
necessary to assure and improve the quality of products.

Most of the statistical quality control techniques used now have been devel-
oped during the last century. One of the most commonly used statistical tools,
control charts, was introduced by Dr. Walter Shewart in 1924 at Bell Laborato-
ries. The acceptance sampling techniques were developed by Dr. H. F. Dodge
and H. G. Romig in 1928, also at Bell Laboratories. The use of design of experi-
ments developed by Dr. R. A. Fisher in the U.K. began in the 1930s. The end of
World War II saw increased interest in quality, primarily among the industries
in Japan, which were helped by Dr. W. E. Deming. Since the early 1980s, U.S.
industries have strived to improve the quality of their products. They have been
assisted in this endeavor by Dr. Genichi Taguchi, Philip Crosby, Dr. Deming,
and Dr. Joseph M. Juran. Industry in the 1980s also benefited from the contri-
butions of Dr. Taguchi to design of experiments, loss function, and robust design.
The recent emphasis on teamwork in design has produced concurrent engineer-
ing. The standards for a quality system, ISO 9000, were introduced in the early
1990s. They were later modified and enhanced substantially by the U.S. auto-
mobile industries, resulting in QS-9000. 

The basic steps in statistical quality control methodology are represented in
Figure 1.1, which also lists the output of each step. This textbook covers most
of the steps shown in the figure. It should be emphasized here that the steps
given are by no means exhaustive. Also, most of the activities must be per-
formed in a parallel, not sequential, manner. In Chapter 2, Tolerancing, assem-
bly tolerance is allocated to the components of the assembly. Once tolerances
©2001 CRC Press LLC



    
on the quality characteristics of the components are determined, processes
must be selected for manufacture of the components. The personnel responsible
for process selection must be cognizant of the effect of quality characteristic
variances on the quality of the product. This process, developed by Dr. Taguchi,
is discussed in Chaper 3, Loss Function. Robust design, which is based upon
loss function, is also discussed in this chapter. Process capability analysis,
which is an important step for selection of processes for manufacture of the
components and the product, is discussed in Chapter 4. Process capability
analysis cannot be completed without ascertaining that the process is in con-
trol. Even though this is usually achieved using control charts, this topic is
covered later in the book. The effect of measurement error, which is addressed
in Chapter 5, should also be taken into consideration. Emphasis in the text is
given to modeling of errors, estimation of error variances, and the effect of
measurement errors on decisions related to quality. After process selection
is completed, optimal means for obtaining the quality characteristics must be
determined, and these are discussed in Chapter 6, Optimal Process Levels.
The emphasis in this chapter is on the methodologies used and the development
of objective functions and solution procedures used by various researchers. The
next step in the methodology is process setting, as discussed in Chapter 7, in
which the actual process mean is brought as close as possible to the optimal

FIGURE 1.1
Quality control methodology.
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value determined earlier. Once the process setting is completed, manufac-
ture of the components can begin. During the entire period of manufacture,
the mean and variance of the process must be kept at their respective target
values, which is accomplished, as described in Chapter 8, through process
control, using control charts. Design of experiments, discussed in Chapter 9,
can be used in any of the steps mentioned earlier. It serves as a valuable tool
for identifying causes of problem areas, reducing variance, determining the
levels of process parameters to achieve the target mean, and more.

Many of the steps described must be combined into one larger step. For
example, concurrent engineering might combine tolerancing, process selec-
tion, robust design, and optimum process level into one step. It is empha-
sized again that neither the quality methodology chart in Figure 1.1 nor the
treatment of topics in this book implies a sequential carrying out of the steps.
©2001 CRC Press LLC
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2.1 Introduction

In mass production, products are assembled using parts or components
manufactured or processed on different processes or machines. This requires
complete interchangeability of parts while assembling them. On the other
hand, there will always be variations in the quality characteristics (length,
diameter, thickness, tensile strength, etc.) because of the inherent variability
introduced by the machines, tools, raw materials, and human operators. The
presence of unavoidable variation and the necessity of interchangeability
require that some limits be specified for the variation of any quality character-
istic. These allowable variations are specified as tolerances. Usually, the toler-
ances on the quality characteristics of the final assembly/product are specified
by either the customer directly or the designer based upon the functional
requirements specified by the customer. The important next step is to allocate
these assembly tolerances among the quality characteristics of the compo-
nents of the assembly. In this chapter, we will learn some methods that have
been developed for tolerance allocation among the components.

2.2 Preliminaries

We will consider assemblies consisting of k components (k ≥ 2). The quality
characteristic of component i that is of interest to the designer (user) is
denoted by Xi. This characteristic is assumed to be of the Nominal-the-Better
type. The upper and lower specification limits of Xi are Ui (USLi) and Li (LSLi),
respectively.

The assembly quality characteristic of interest to the designer (user)
denoted by X is a function of Xi, i = 1, 2,…, k. That is,

X = f(X1, X2,…, Xk)   (2.1)

At first, we will consider linear functions of Xi only:

X = X1 ± X2 ± X3 ±  ± Xk   (2.2)

The upper and lower specification limits of X are U (USL) and L (LSL), respec-
tively. These are assumed to be given by the customer or determined by the
designer based on the functional requirements specified by the customer.
Some examples of the assemblies with linear relationships among the assem-
bly characteristics and component characteristics are given next. 

Example 2.1
Three different assemblies are given in Figures 2.1a, b, and c. In the shaft and
sleeve assembly shown in Figure 2.1a, the inside diameter of the sleeve and

º
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the outside diameter of the shaft are the component characteristics, and the
clearance between these diameters is the assembly characteristic. Let X1 and X2

represent the inside diameter of the sleeve and the outside diameter of the
shaft, respectively, and let X denote the clearance between these two diame-
ters. Then, the relationship between the assembly characteristic and the com-
ponent characteristic is given by:

X = X1 – X2   (2.3)

In the assembly given in Figure 2.1b, the component characteristics are the
lengths of these components, denoted by X1, X2, and X3, and X is the length of
the assembly. The relationship among the tolerances in this case is given by:

X = X1 + X2 + X3   (2.4)

FIGURE 2.1
Some examples of assemblies.
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In Figure 2.1c, the assembly characteristic X is related to the component char-
acteristics X1, X2, and X3 as: 

      X = X1 – X2 – X3 (2.5)

In general, these relations can be written as in Eq. (2.2).

2.3 Additive Relationship

Tolerance is the difference between the upper and lower specification limits.
Let the tolerance of Xi be Ti, i = 1, 2, …, k, and let the tolerance of the assembly
characteristic X be T. Then,

Ti = Ui – Li, i = 1, 2,…, k   (2.6)

where Li and Ui are the lower and upper specification limits of characteristic
Xi, respectively. Similarly,

T = U – L,   (2.7)

where L and U are the lower and upper specification limits of X, respectively.
The relationship between T and T1,…, Tk can now be derived using the

assembly in Figure 2.1c as an example. The relationship among the tolerances
was given in Eq. (2.5) as: 

X = X1 - X2 - X3

As U is the maximum allowable value of X, it is realized when X1 is at its max-
imum allowable value and X2 and X3 are at their respective minimum allow-
able values. Hence, 

U = U1 - L2 - L3 (2.8)

Similarly L, being the minimum allowable value of X, is obtained when X1 is
at its minimum allowable value and X2 and X3 are, respectively, at their max-
imum allowable values. Hence, 

L = L1 - U2 - U3            (2.9)

Now, as per Eq. (2.7),   

T = (U - L)
©2001 CRC Press LLC



which can be written using Eqs.(2.8) and (2.9) as:

T = (U1 - L2 - L3) - (L1 - U2 - U3)

= (U1 - L1) + (U2 - L2) + (U3 - L3)

= T1 + T2 + T3 (2.10)

In general, for any linear function X = X1 ± X2 ± X3 ± ± Xk, 

T = T1 + T2 + T3 + + Tk       (2.11)

This is called an additive relationship. The design engineer can allocate toler-
ances T1,…,Tk among the k components, for a given (specified) T, using this
additive relationship. Let us now use this relationship in an example to allo-
cate tolerance among the components.

Example 2.2
Let us consider the assembly depicted in Figure 2.1a, having two components
(sleeve and shaft) with characteristics (diameters) X1 and X2, respectively. The
assembly characteristic is the clearance between the sleeve and the shaft,
denoted by X, which is equal to: 

X = X1 - X2  (2.12)

and

T = T1 + T2 (2.13)

Let us assume that the tolerance on X, which is T, is 0.001 in. Using Eq. (2.13),
we get:

T1 + T2 = 0.001  (2.14)

There are two unknowns, T1 and T2, and only one equation. In general, if the
assembly has k components, there will be k unknowns and still only one
equation. We need (k – 1) more equations or relations among the components’
tolerances, Ti’s, in order to solve for them. These relations usually reflect the
difficulties associated with maintaining these tolerances while machining/
processing the components. As we will see later, the manufacturing cost
decreases when the tolerance on the quality characteristic increases. Let us
assume that, in our example, the difficulty levels of maintaining both T1 and
T2 are the same, hence the designer would like these tolerances to be equal.
That is, 

T1 = T2 (2.15)

º

º
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Using (2.14) and (2.15), we obtain

On the other hand, if it is more difficult to process component 1 than compo-
nent 2, then the designer would like to have T1 greater than T2. For example,
the following relation can be used:

     T1 = 2T2 (2.16)

In this case, using Eqs. (2.14) and (2.16), we get:

rounding off to five decimal places. It may be noted here that the number of
decimal places carried in the tolerance values depends upon the precision of
the instruments/gauges used to measure the characteristics.  

2.4 Probabilistic Relationship

As this relationship depends upon the probabilistic properties of the compo-
nent and assembly characteristics, it necessary to make certain assumptions
regarding these characteristics:

1. Xi’s are independent of each other.
2. Components are randomly assembled.
3. ; that is, the characteristic Xi is normally distributed

with a mean mi and a variance  (this assumption will be relaxed
later on).

4. The process that generates characteristic Xi is adjusted and con-
trolled so that the mean of the distribution of Xi, mi, is equal to the
nominal size of Xi, denoted by Bi, which is the mid-point of the
tolerance region of Xi. That is,  

(2.17)

5. The standard deviation of the distribution of the characteristic Xi,
generated by the process, is such that 99.73% of the characteristic Xi

T1 T2
T
2
--- 0.001

2
------------- 0.0005= = = =

2T2 T2+ 0.001 T2Æ 0.00033= =

   T1 0.00066=

Xi N mi,si
2( )~

si
2

mi
Ui Li+( )

2
---------------------=
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falls within the specification limits for Xi. Based upon the property
of normal distribution, this is represented as (see Table 2.1):

Ui - Li = Ti = 6si, i = 1, 2,…, k (2.18)

Let m and s2 be the mean and variance, respectively, of X. As X = X1 ± X2 ±
X3 ± ± Xk, 

m = m1 ± m2 ± m3 ± ± mk  (2.19)

and as the Xi‘s are independent of each other, 

(2.20)

Because of assumption 2 (above), the assembly characteristic X is also nor-
mally distributed.

Let us assume that 99.73% of all assemblies have characteristic X within the
specification limits U and L. This yields a relation similar to Eq. (2.18):

(U - L) = T = 6s  (2.21)

From Eqs. (2.18) and (2.21), we get: 

(2.22)

and

(2.23)

Combining Eqs. (2.20), (2.22), and (2.23) yields:

 (2.24)

TABLE 2.1 

Areas for Different Ranges Under Standard Normal Curve

Range
% Covered within 

the Range
% Outside the 

Range
Parts per million 

Outside the Range

(m – 1s) to (m + 1s) 68.26 31.74 317,400
(m – 2s) to (m + 2s) 95.44 4.56 45,600
(m – 3s) to (m + 3s) 99.73 0.27 2700
(m – 4s) to (m + 4s) 99.99366 0.00634 63.4
(m – 5s) to (m + 5s) 99.9999426 0.0000574 0.574
(m – 6s) to (m + 6s) 99.9999998 0.0000002 0.002

º

º
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or 

 (2.25)

The relationship given in Eq. (2.25) is called a probabilistic relationship and
provides another means for allocating tolerances among components for a
given assembly tolerance, T. Let us use this relationship to allocate tolerances
among the two components of the assembly considered earlier.

Example 2.3
We may recall that by using the additive relationship (and assuming that
T1 = T2), the tolerances were obtained as T1 = T2 = 0.0005 in. Now setting T =
0.001 in Eq. (2.25) yields:

We face the same problem we encountered earlier; that is, we have only one
equation, whereas the number of variables is 2 (in general, it is k). If we intro-
duce the same first relation used earlier (T1 = T2), then Eq. (2.26) gives:

 

T1 = T2 = 0.00071

if five significant digits are kept after the decimal point.
The component tolerances T1 and T2 obtained using the additive and prob-

abilistic relationships for the same assembly tolerance T = 0.001 and the same
relationship between T1 and T2 (T1 = T2) are summarized in Table 2.2.

It can be seen that the probabilistic relationship yields larger values for the
component tolerances compared to the additive relationship (43% more in
this example). We will examine the advantages and disadvantages of this
increase in component tolerances next. 

Now, we have two relations between T and (T1,…,Tk):

T = T1 + T2 + T3 + +  Tk (2.26)

TABLE 2.2

Comparison of Additive and Probabilistic 
Relationships

Additive Probabilistic

T1 0.0005 0.00071
T2 0.0005 0.00071

T T1
2 T2

2 º Tk
2+ + +=

T1
2 T2

2+ 0.0005=

2T1
2 0.001 T1Æ 0.001

2
-------------= =

º
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and 

(2.27)

Let us denote T in (2.26) by Ta and T in (2.27) by Tp (  and  for compo-
nents); then:

 (2.28)

and

 (2.29)

In Examples (2.2) and (2.3), we set Ta = Tp = 0.001 and solved for  
0.005 and  We saw that  and . Now let us
examine the advantages and disadvantages of using the probabilistic rela-
tionship to allocate tolerances among the components.

2.4.1 Advantages of Using Probabilistic Relationship

It is a well-established fact that manufacturing cost decreases as the tolerance
on the quality characteristic increases, as shown in Figure 2.2. Hence, the man-
ufacturing cost of the components will decrease as a result of using the prob-
abilistic relationship.

FIGURE 2.2
Curve showing cost–tolerance relationship.
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2.4.2 Disadvantages of Using Probabilistic Relationship

If the probabilistic relationship is used, then the tolerance on the internal
diameter of the sleeve and the outside diameter of the shaft is 0.00071. This
implies that the maximum allowable range of the internal diameter of the
sleeve is 0.00071. Likewise, the maximum allowable range of the outside
diameter of the shaft is also 0.00071. Hence, the actual maximum range of
the clearance of the assemblies assembled using these components will be

T1 + T2 = 0.00071 + 0.00071 = 0.000142

The allowable range of the clearance of the assemblies, T, is 0.001. This will
obviously lead to rejection of the assemblies. In order to estimate the actual
proportion of rejection, we need the probability distribution of the assembly
characteristic, X, along with its mean and standard deviation. 

If the component characteristics are normally distributed, then the assem-
bly characteristic is also normally distributed. If the means of the component
characteristics are equal to their respective nominal sizes, then the mean of
the assembly characteristic is equal to the assembly nominal size. The only
equation that contains the variance, s 2, is

(2.30)

The standard deviations, s1, and s2, are (per assumption (5) made earlier):

and 

Hence,

and

6s = 6 ¥ 0.000167

= 0.001

Because X is normally distributed, the range 6s contains 99.73% of the values
of X, which is the assembly characteristic (see Table 2.1). Hence, the percent-
age rejection of the assemblies is <0.27%. This is illustrated in Figure 2.3.

s2 s1
2 s2

2 º sk
2+ + +=

s 1
T1

6
----- 0.00071

6
------------------- 0.000118= = =

s2
T2

6
----- 0.000118= =

s 0.0001182 0.001182+ 0.000167= =
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Now, let us compare the percentage of rejection of the assemblies when the
component tolerances are determined using the additive relationship. Now
the standard deviations, s1 and s2 are

and

s2 = 0.0000833

Hence, 

and

6s = 6 ¥ 0.000117 = 0.00071

As 6s is less than the maximum allowable range (T = 0.001), the percentage
rejection now is . This is illustrated in Figure 2.4.

FIGURE 2.3
The result of a probabilistic relationship.

.
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Thus, determining component tolerances using the probabilistic relation-
ship increases the percentage rejection of assemblies while decreasing the
manufacturing cost of the components. It also increases inspection cost (100%
inspection of assemblies).

2.4.3 Probabilistic Relationship for Non-Normal 
Component Characteristics

Let the probability density function of Xi be fi(xi) with a mean mi and a vari-
ance . We assume that the range that contains 100% or close to 100% of all
possible values of Xi is gi si. It is still assumed that:

Ti = gi si      (2.31)

(ideally Ti >>>> gi si). This can be written as:

 (2.32)

Now, given that X = X1 ± X2 ± X3 ± ± Xk, the distribution of X is approxi-
mately normal, because of the Central Limit Theorem. So,

FIGURE 2.4
The result of an additive relationship.
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assuming 99.73% coverage. Using the formula ,

(2.33)

2.4.3.1 Uniform Distribution 

If fi(xi) is a uniform distribution for all i, then (Figure 2.5):

(2.34)

(2.35)

(2.36)

(2.37)

FIGURE 2.5
Uniform distribution.
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The assembly characteristic, X, can be assumed to be approximately nor-
mally distributed, and the probability tolerance relationship in Eq. (2.30) can
be used, even if the component characteristics are uniformly distributed,
when the number of components, k, is large, because of the Central Limit
Theorem. However, this approximation will yield poor results when k is
small, as illustrated by the following example.

Example 2.4
Consider an assembly consisting of two components with quality charac-
teristics X1 and X2. The assembly characteristic X is related to X1 and X2 as
follows:

X = X1 + X2

Assume that it is possible to select processes for manufacturing the compo-
nents such that X1 and X2 are uniformly distributed. The ranges of X1 and X2

are (L1, U1) and (L2, U2), respectively. The tolerance on the assembly charac-
teristic is specified as 0.001. Allocate this tolerance among the components
using the probabilistic relationship, assuming that the component tolerances
are equal.

If we use the additive relationship, the tolerances T1 and T2 are

Now let us use the probabilistic relationship:

It can be seen that the probabilistic relationship yields tolerances that are
smaller than the tolerances obtained using the additive relationship. The
reason for this is that the assembly characteristic X is not normally distrib-
uted. The Central Limit Theorem is true only for large values of k.

The actual distribution of X is a triangular distribution. Figure 2.6 contains
this distribution, obtained as result of adding two independent uniform ran-
dom variables with the same minimum and maximum limits (that is, assum-
ing L1 = L2 and U1 = U2). Here, the range containing 100% of X is

2U1 - 2L1 = 2(U1 - L1) = 2T1

0.001 T1 T2+=

T1 T2
0.001

2
------------- 0.0005= = =

Tp 3 T1
2 T2

2+=

0.001 3 2T1
2 T1 6( )Æ 0.001= =

T1 T2 0.000408 0.00041.@= =
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Hence, the correct probabilistic relationship is

This example highlights the problem in using the probabilistic relationship
when the component characteristics are not normally distributed and when
k is small.

Example 2.5
Now let us assume that the number of components is 10 (that is, k =  10
instead of 2). We assume that the component characteristics are uniformly
distributed in the ranges of the respective specification intervals and that the
tolerances (Ti) are all equal.

The additive relationship yields:

The probabilistic relationship yields

In this case, the tolerances obtained using the probabilistic relationship are
larger than the tolerances resulting from the additive relationship. This is
because the distribution of X is closer to the normal distribution as k is large (10).

FIGURE 2.6
Sum of two uniform distributions.

f (x)

x
2U12L1

Tp 2T1, not Tp 6T1= =

10T1 0.001 T1Æ T2
º T10 0.0001= = = =

3 10T1
2 0.001 T1 30Æ 0.001= =

T1 T2
º T10

0.001
30

------------- 0.000183= = = =
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2.4.3.2 Beta Distribution

The beta distribution is a more flexible probability density function com-
pared to the normal distribution because it can accommodate different
ranges (not always from –• to +•, as in the normal distribution) and differ-
ent shapes from left skewed to symmetrical to right skewed (not always
symmetric, as in the normal distribution). It has four parameters: a and b,
which are, respectively, the minimum and maximum values that a beta ran-
dom variable can assume, and g and h, which are the shape parameters. The
density function is

 (2.38)

where

(2.39)

and 

 (2.40)  

Though the density function is not a simple function, the flexibility it offers
and its finite range make it an excellent candidate for representing many
quality characteristics in real life. The shape of the density function depends
upon the values of the shape parameters g and h.

The mean and variance of the beta distribution are given next. The shape
parameters g and h are also expressed as functions of the mean and vari-
ance below. Finally, the range of the beta distribution is expressed in terms
of the standard deviation.

(2.41)

(2.42)

(2.43)

f x( ) 1
b a–( )B g , h( )

----------------------------------- x a–
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-----------
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1 x a–
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-----------–
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G g h+( )
------------------------ vg -1 1 v–( )h -1 vd

0

1

Ú= =

G g( ) g 1–( )!=

E X( ) m a b a–( ) g
g h+( )

-----------------+ bg ah+( )
g h+( )

-----------------------= = =

Var X( ) s2 b a–( )2gh
g h 1+ +( ) g h+( )2

-----------------------------------------------= =

g m a–( )2 b m–( ) s2 m a–( )–

s2 b a–( )
-----------------------------------------------------------------=
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(2.44)

(2.45)

It can be seen from Eq. (2.42) that for the beta distribution:

(2.46)

Hence, for component characteristics that follow the beta distribution, the
probabilistic relationship in Eq. (2.30) becomes:

(2.47)

The formulas we derived so far are based on the following assumptions:

1. The probability distributions of the quality characteristics gener-
ated by the processes are known.

2. The capability of the process matches the (engineering) specification
tolerance (Ti) of the quality characteristic Xi. (Here, capability means
the range of all possible values of the quality characteristic generated
by the process.) In other words, the range of all possible values of
quality characteristic Xi is equal to the range of allowable values as
per specifications (that is, the range Ui – Li):

(Ti = gi s i)

3. The mean of the distribution of the characteristic Xi generated by
the process mi is equal to the nominal size, Bi, which is the mid-
point of the tolerance interval. That is, 

Let us consider assumption (2). The range of all possible values of any qual-
ity characteristic generated by a process is called the natural process tolerance
of that process and is denoted by ti. This is different from Ti, which is the
allowable range of Xi:

ti = gi si  (2.48)

h m a–( ) b m–( ) s2 b m–( )–

s2 b a–( )
---------------------------------------------------------------=

b a–( ) Range ti
g h 1+ +( ) g h+( )2

gh
-----------------------------------------------si= = =

gi
g h 1+ +( ) g h+( )2

gh
-----------------------------------------------=

Tp 6 gh
g h 1+ +( ) g h+( )2

-----------------------------------------------  T1
2 T2

2 º Tk
2+ + +=

mi Bi
Ui Li+( )

2
---------------------, for i 1, 2, º, k= = =
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The range of allowable values of the quality characteristic Xi is the engineer-
ing tolerance, which is denoted by Ti. Per assumption (2), Ti = ti (ideally, Ti ≥ ti).
Table 2.3 gives the natural process tolerances for the normal, uniform, and
beta distributions obtained earlier.

The natural process tolerance is called process capability in real-life applica-
tions. For a given machine or process, ti depends upon the operation per-
formed on the machine (such as turning, forming, etc.) and the material used
(brass, stainless steel, etc.). 

Assumption (3) is not realistic, because in real-life applications it is very
difficult to make the mean of Xi, mi, exactly equal to the nominal size, Bi. It
requires a long time to achieve this, hence industries allow a maximum nonzero
deviation between the mean and the nominal size. In the next section, we will
consider the component tolerance allocation problem in cases where the pro-
cess means (mi) are not equal to the respective nominal sizes (Bi), which are
assumed to be the mid-points of the respective tolerance intervals. That is,

2.5 Tolerance Allocation When the Means Are Not Equal 
to the Nominal Sizes 

The method of component tolerance allocation for a given assembly tolerance
discussed in this section is based on the paper, “The Application of Probabil-
ity to Tolerances Used in Engineering Designs.”6 The following assumptions
are made:

1. Xi’s are independent of each other.
2. Components are randomly assembled.
3.  that is, the characteristic Xi is normally distributed

with a mean mi and a variance 

TABLE 2.3

Natural Process Tolerances

Distributions ti(gisi)

Normal 6si (99.73%)

Uniform (100%)

Beta (100%)

12 si

g h 1+ +( ) g h+( )2

g h
-----------------------------------------------  si

mi Bi mi
Li Ui+

2
-----------------πË ¯

Ê ˆπ

Xi N mi, si
2( );~

si
2.
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4. The standard deviation of the distribution of the characteristic Xi

generated by the process is such that the natural process tolerance
of Xi(= ti) is less than Ti(= Ui - Li). That is, the actual range of all
possible values of Xi is contained within the allowable range of the
values of Xi.

5. The relationship between the assembly characteristic and the com-
ponent  characteristic is assumed to be 

X = X1 ± X2 ± X3 ± … ± Xk

The location of the mean of the distribution of Xi, mi, is fixed while setting
the process. Let the maximum allowable difference between the mean mi and
the midpoint Bi (nominal size of Xi) of the tolerance region be ai.
Case 1, when mmmmi >>>> Bi. Let us consider the worst case, when mi is at its maxi-
mum allowable location, for i = 1, 2,…, k. From Figure 2.7:

(2.49)

(2.50)

FIGURE 2.7
Right shift in the mean of Xi.
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Case 2, when mmmmiiii <<<< Bi. Again, let us consider the worst case, when mi is at its
minimum allowable location, for i = 1, 2,…, k. From Figure 2.8:

(2.51)                    

(2.52)

Now let us consider the assembly characteristic X. As we do not know the
exact location of mi anymore (all we know is that maximum |mi - Bi| = ai), we
do not know the exact location of m either. Let the maximum and minimum
possible values of m be mmax and mmin, respectively (Figure 2.9). In the figure:

(2.53)

At any given position of m in the range (mmin, mmax), the range containing all
possible (99.73% for normal distribution) values of X is

FIGURE 2.8
Left shift in the mean of Xi.
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using Eq. (2.30) and setting all gi = 6.0 for the normal distribution:

(2.54)

Let the total spread of X (that is, the range of all possible values of X) be Ts.
From Figure 2.10:

(2.55) 

As  (Eqs. (1.48) and (1.50)) and 2ai = (Ti – ti), Eq. (2.53) can be
written as:

(2.56)

FIGURE 2.9
Distribution of X.

FIGURE 2.10
Assembly in Example 2.6.
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where Ta is the assembly tolerance obtained by adding all the component tol-
erances (Eq. (2.26) with ).

When the processes are able to satisfy the tolerances exactly and when mi =
Bi for all i,

Ti = ti and ai = 0, for i = 1, 2,…, k

Hence, 

which is the probabilistic relationship as per Eq. (2.27).
Rewriting Eq. (2.54):

(2.57)

In the above equation, the ti is known if the processes have been selected
for the manufacture of components (each ti is the natural process tolerance).
Let  (a constant), for i = 1, 2,…, k. This ratio is called the process capability
ratio (PCR, or Cp), and will be discussed in Chapter 4. For a process generating
a quality characteristic that follows a normal distribution, ti is usually taken as
6si. Some industries select processes for manufacturing such that Ti = 12si, so
G for such industries is 

It is reasonable to assume that G is the same for all quality characteristics,
hence: 

from which 

Ti = Gti (2.58)

From Eq. (2.26), setting 

Ta = T1 + T2 + … + Tk

Tai
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which, using Eq. (2.56), becomes:

 (2.59)

Combining Eqs. (2.55) and (2.57), we get:

from which G can be written as:

(2.60)

In the above equation, G (PCR, or Cp) is specified by the manufacturer (as a
target value), and Ts can be set equal to T, which is the given (known) assem-
bly tolerance. So the only unknown variables are ti, i = 1,…, k. Once these are
found, the tolerances T1,…, Tk can be obtained using Eq. (2.56). But, the main
problem in solving for ti, i = 1, 2,…, k, is the nonlinear term in Eq. (2.58). The
following approximate solution procedure can be used to obtain the toler-
ances, Ti.

Approximate Solution Procedure
If we assume that all the natural process tolerances are equal—that is, t1 =
t2 = … = tk = t—then:

So, 

 (2.61)
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from which, 

(2.62)

Now, ti and then Ti can be obtained using the following steps:

1. Specify a value for G.
2. Set Ts = T in Eq. (2.44) and find .
3. Based on the natural process tolerances of the available processes

on the shop floor, select the processes (that is, select each ti) such
that  is as close as possible to the value obtained in step 2.

4. Find the actual value of G using Eq. (2.58).
5. Depending upon the difference between the specified G and the

actual G, change the ti if necessary.
6. Find Ti for i = 1, 2,…, k, using Eq. (2.56).

Example 2.6
An assembly consists of five components. The tolerance on the assembly
characteristic is given as 0.001. The manufacturer of the components wants
the minimum value of G to be 1.33. The natural process tolerances (process
capabilities) of the processes available on the shop floor for manufacturing
the components are given in Table 2.4. Select the suitable processes and find
the tolerances, Ti, i = 1, 2,…, k.

SOLUTION
Given k = 5; T = 0.001; G = 1.33:

Step 1—The value of G is given as 1.33.  
Step 2—Setting Ts = T = 0.001 and G = 1.33 in (1.60) gives

TABLE 2.4

Available Processes (ti Values)

i = 1 i = 2 i = 3 i = 4 i = 5 

A1 0.0002 A2 0.0001 A3 0.0001 A4 0.0002 A5 0.0001 
B1 0.0003 B2 0.0002 B3 0.0003 B4 0.0004 B5 0.0004
C1 0.0004 C2 0.0003 C3 0.0005 C4 0.0006 C5 0.0005
D1 0.0005 D2 0.0004 D3 0.0006
E1 0.0006 E2 0.0005 E3 0.0007

ti
i=1

k

Â Ts

G 1– 1
k

------+
-------------------------=

Si=1
k ti

�  i=1
k ti

ti
i=1

5

Â 0.001
1.33 1– 1 5§+
----------------------------------------=

0.00129=
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Step 3—One possible combination is to select:

Step 4—The actual value of G using Eq. (2.42) is obtained as: 

Step 5—The specified value of G is 1.33. Assume that the manu-
facturer is not satisfied with the value of G obtained. Let us select
the following combination of processes:

Using (2.58), now G is 1.35. This is larger than the specified value,
thus the manufacturer decides to use these processes, which are
A1, B2, B3, B4, and A5. 
Step 6—The tolerance, Ti, is now obtained using Eq. (2.56) as
follows:

 (The values within parentheses are rounded off to four significant
digits after the decimal point.) 

It can be seen that the actual range of the assembly characteristic is
 ¥ 100 = 73% larger than the allowable range, which is T = 0.001.

ti 

A1 0.0002
C2 0.0003
B3 0.0003
B4 0.0004
A5 0.0001  

 = 0.0013

ti 

A1 0.0002
B2 0.0002
B3 0.0003
B4 0.0004
A5 0.0001  

 = 0.0012

T1 =  t1 ¥ 1.35 =  0.0002 ¥ 1.35 =  0.00027 (0.0003)
T2 =  t2 ¥ 1.35 =  0.0002 ¥ 1.35 =  0.00027 (0.0003)
T3 =  t3 ¥ 1.35 =  0.0003 ¥ 1.35 =  0.000405 (0.0004)
T4 =  t4 ¥ 1.35 =  0.0004 ¥ 1.35 =  0.00054 (0.0005)
T5 =  t5 ¥ 1.35 =  0.0001 ¥ 1.35 =  0.000135 (0.0002)

  = 0.0017

tiÂ

G 0.001 0.00130 0.00022 º 0.00012+ +–+
0.00130

---------------------------------------------------------------------------------------------------------=

1.29.=

tiÂ

TiÂ

0.0017 0.001–( )
0.001

----------------------------------------
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We will now represent this increase in the range in the probability distribu-
tion of the assembly characteristic. First, we will compute the actual variance
of the assembly characteristic, X. For X = X1 ± X2 ± X3 ± X4 ± X5,

As X is normally distributed, the natural process tolerance for X (the range
containing 99.73% of all values) at any given location of its mean is

t = 6 s = 6 ¥ 0.000097 = 0.000582

Now let us calculate the ai values for i = 1, 2,…, k:

The distribution of X, with these values, is given in Figure 2.11.
The formulas derived and the values we obtained assume the worst-case

scenario (that is, the shift between mi and Bi is either +ai or –ai for all i), but in
most of the situations, the shift between mi and Bi may not be equal to ai for
all i. Only after the manufacture is completed will we know the exact location
of mi for all i and hence the location of the mean of X, which is m. So, we do
not have to consider an interval or range for m.

Let us consider a case in which the maximum shift allowed (that is, ai) is
not used while setting the processes. We will use the data from Example 2.6.
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The maximum shifts (ai) and the actual shifts are given below.

Let us assume that the assembly is as shown in Figure 2.10. In this assem-
bly, the assembly characteristic is

X = X1 - X2 - X3 - X4 - X5

The nominal size of X is

B = B1 - B2 - B3 - B4 - B5

and the mean of X is

m = m1 - m2 - m3 - m4 - m5

Based on the assumptions about the actual shifts,

FIGURE 2.11
Expected distribution of X in Example 2.6.

Component (i)  ai ==== (Ti ---- ti)////2 Actual Shift

1   (0.0003 – 0.0002)/2 = 0.00005 +0.00002 
2   (0.0003 – 0.0002)/2 = 0.00005 -0.00001 
3   (0.0004 - 0.0003)/2 = 0.00005 +0.00004
4 0.00005  +0.00005
5 0.00005 -0.00002
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Hence, the nominal size of X is

That is, the mean of distribution of X is located to the left of the nominal size B
at a distance of 0.00004. From earlier calculation, the standard deviation of X
is

s = 0.000097

The actual distribution of X is given in Figure 2.12. Now the actual propor-
tion of undersized and oversized components can be estimated separately.

UNDERSIZED

FIGURE 2.12
Actual distribution of X in Example 2.6.
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Table A.5 in the Appendix gives the proportion of defectives for some standard
normal values not found in the commonly used standard normal tables. It con-
tains the cumulative probabilities for Z values in the range (–3.00 to –6.00) and
the parts per million (ppm) values obtained by multiplying the cumulative
probabilities by 106. From the table, the proportion of undersized compo-
nents (pus) is z = –4.74 = 1.07 ppm.

OVERSIZED

From Table A.5, the proportion of oversized components (pos) is z = –5.57 =
0.0128 ppm. In none of the tolerance assignment methods discussed earlier
was an objective function used. In the next section, minimization of the total
cost of manufacture will be used as the objective function in allocating toler-
ance among components.

2.6 Tolerance Allocation that Minimizes the Total
Manufacturing Cost

(This section is based on the paper by Bennett and Gupta, “Least-Cost
Tolerances—I.”2) The objective here is to determine the component tolerances
for a given (specified) assembly tolerance. The main differences between this
discussion and the earlier methods we used to allocate tolerances among the
components of an assembly are as follows:

1. An objective function is included: to minimize the total cost of
manufacturing the components.

2. The relationship between the assembly tolerance, T, and the com-
ponent tolerances, Ti is given by:

(2.63)  

3. We can see that the relationship is still linear, but the coefficients
of the Ti need not be equal to 1. (In the paper by Mansoor6 and
earlier discussions, we assumed that Ni = 1 for all i.)

4. Process selection is not explicitly addressed (ti is not used). It is
assumed that the manufacturing cost of component i (with char-
acteristic Xi and tolerance Ti) is assumed to be

(2.64)

USL m–( ) 0.0005 0.00004+ 0.00054= =

0.0005
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T Ni Ti¥
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k

Â=

Ci hi Ti
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In this equation, hi and ai are constants which affect the shape of the cost–
tolerance curve, and ai < 0. This cost relationship satisfies two basic require-
ments: (1) When Ti = 0, Ci = •; and (2) Ci should be a decreasing function of Ti.

2.6.1 Formulation of the Problem

The decision variables are T1, T2, …, Tk. The objective function is to minimize
the total cost of manufacture. That is, to minimize:

(2.65)

where C is the total manufacturing cost of the components. The constraint in
this problem guarantees that the sum of the component tolerances selected
does not exceed the given tolerance on the assembly characteristic; that is,

(2.66)

All the component tolerances are non-negative; that is,

Now the formulation can be summarized as find:

so as to minimize:

subject to:

and  

(Ti’s are assumed to be continuous.)
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This is a nonlinear programming problem that can be solved using the
method of LaGrange multipliers.1 The first step is to transform this con-
strained optimization problem to an unconstrained optimization problem. The
objective function of this unconstrained problem is written as:

(2.67)

Now the problem is to find the optimum values of Ti, i = 1, 2, …, k, and l
that minimize F. This is a simpler problem than the original problem because
the optimum values of Ti and l can be obtained by differentiating F with
respect to the Ti and l and setting the derivatives equal to 0:

(2.68)

 

(2.69)

Let: 
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(2.70)
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-------- hiaiTi

ai-1
lNi+ 0, i 1, 2,º, k= = =

hiaiTi
ai-1

l– Ni=

Ti
lNi–

hiai
------------

1
ai-1
------------

, i 1, 2,º, k= =

0<

∂F
∂l
------ NiTi

i=1

k

Â T– 0= =

T NiTi
i=1

k

Â Ni
lNi–

hiai
------------

1
ai 1–
--------------

i=1

k

Â= =

Ni
1–

hiai
---------Ë ¯

Ê ˆ
1

ai 1–
--------------

lNi( )
1

ai 1–
--------------

i=1

k

Â=

Ki Ni
1

ai hi
----------–Ë ¯

Ê ˆ
1

ai 1–
--------------Ë ¯

Ê ˆ

and bi
1

ai 1–
--------------Ë ¯

Ê ˆ= =

T Ki lNi( )
bi

i=1

k

Â=
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In the above equation, the only unknown variable is l. If the value of l that
satisfies the above equation can be found, then Eq. (2.66) can be used to
obtain Ti, i = 1, 2, …, k.

Let us consider the following equation obtained from Eq. (2.68):

(2.71)

This is a polynomial in l. The problem now is to find the root of Eq. (2.69),
which is equivalent to solving for l. The following is a modified Newton-
Raphson method.7

2.6.2 Steps for the Newton–Raphson Method

1. First find  and 

 (2.72)

(2.73)

2. Assume a starting value for l(l0). A possible value is 

(2.74)

where

(2.75)

Set l = l0.
3. Find:

(2.76) 

and

(2.77)

f l( ) Ki lNi( )
bi T–

i=1

k

Â=

f¢ l( ) df l( )
dl

--------------= f≤ l( ) d2 f l( )
dl2

----------------- :=

f¢ l( ) Kibi lNi( )
bi-1( )

Ni
i=1

k

Â=

f≤ l( ) Kibi bi 1–( ) lNi( )
bi-2( )

Ni
2

i=1

k

Â=

l0
T

Si=1
k KiNi

bi( )
-----------------------------

a 1–( )

=

a Si=1
k Niai( )

Si=1
k Ni( )

-------------------------=

U l( )
f l( )
f¢ l( )
------------=

U¢ l( ) 1 f l( ) f≤ l( )
f¢ l( )[ ]2

--------------------------–=
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4. Find:

(2.78)

5. Set l = l + d.
6. If |d | < some pre-specified value e, stop. l is the root; otherwise, go

to step 3.

Example 2.7
An assembly consisting of six components is considered. The tolerance on the
assembly characteristic is 0.012. The ai and hi values of the six components are
as follows:

Find TA, TB, …, TG.

SOLUTION
Step 1:

K3 = 0.6803715; K4 = 0.6268235

K5 = 0.5563183; K6 = 0.7866426

Component i aaaai hi    

A –0.60 1.00
B –0.80 1.75
C –0.60 0.90
D –0.40 1.30
E –0.40 1.10
G –0.70 0.95

Ni = 1 for all i.

d U l( )
U¢ l( )
---------------–=

f l( ) Ki

i=1

6

Â lNi( )
bi T–=

K1
1

0.60–( ) � 1.00( )
------------------------------------------–Ë ¯

Ê ˆ
1

-0.6-1( )
-----------------------

0.72668= =

K2
1

0.80–( ) � 1.75( )
------------------------------------------–Ë ¯

Ê ˆ
1

-0.8-1( )
-----------------------

1.205542= =
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b3 = –0.625; b4 = –0.7143

b5 = –0.7143; b6 = –0.5882

The objective is to find the value of l that makes f(l) = 0.0. The function f(l)
is a monotonically decreasing function of l, because each term with l in f(l)
is a monotonically decreasing function of l. This implies that f(l) has at most
one root. If the optimization problem has a feasible solution, then there has
to be at least one value of l that satisfies f(l) = 0. Hence, f(l) has exactly one
root.

Now the modified Newton–Raphson method is used to find this root.
After finding the first and second derivatives of f(l), the following steps are
executed. 
Step 2:

as Ni = 1, for all i.
Set l = l0.

Steps 3, 4, 5, and 6: 

 

b1
1

-0.6 1–
-------------------- 0.625–= =

b2
1

-0.8 1–
-------------------- 0.5556–= =

f l( ) 0.72668 l( ) 0.625– 1.205542 l( ) 0.5556– 0.6803715 l( ) 0.625–++=

 0.626823 l( ) 0.7143– 0.5563183 l( ) 0.7143– 0.7866426 l( ) 0.5882– 0.012–+ ++

l0
0.012

Si=1
6 Ki

---------------
a -1( )

12,246.83= =

a
Si=1

6 ai

6
--------------= 0.5833–=Ë ¯

Ê ˆ

f¢ l( ) Ki
i=1

6

Â bi l( )
bi-1

=

f≤ l( ) Kibi bi 1–( ) l( )
bi-2

i=1

6

Â=
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Let us solve this problem with different starting values for l. 

TRIAL 1: llll 0 = 800,000

TRIAL 2: llll 0 = 8000

The values of l moved away from 17,611.88 and the solution did not con-
verge. In this problem, the starting value for l has to be at least 8050 (approx-
imately) in order for the solution to converge to the correct value. Hence, it is
advised that the starting value recommended earlier be used. 

Once the value of l has been obtained, the values of TA, TB, …, and TG can
be determined using Eq. (2.66):

The value for TA is rounded off to 0.0016.

Iteration llll    dddd                        

 1 12,246.83 8368.66
 2 20,615.49 –2693.33
 3 17,922.16 –306.04
 4 17,616.12 –4.28
 5 17,611.84 0
 6 17,611.84 0

l = 17,611.84

Iteration llll dddd   

1 800,000 –482,170.20
2 317,829.80 –184,580.60

  …
8 17,622.01 –10.12
9 17,611.89 –0.00919

10 17,611.88 0
11 17,611.88 0

l = 17,611.88

Iteration llll dddd   

1 8000 –811,748.90

TA
17611.84–

1.00( ) 0.60–( )
----------------------------------

1
-0.6-1( )

-----------------------

0.0016133 0.0016( )= =

TB
17611.84–

1.75( ) 0.80–( )
----------------------------------

1
-0.8-1( )

-----------------------

0.0052771 0.0053( )= =

TC 0.0015105 0.0015( )=

TD 0.00058133 0.0006( )=

TE 0.00051594 0.0005( )=

TG 0.0025017 0.0025( )=

Total: 0.0120
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The final component tolerances and the associated manufacturing costs are
as follows:

In the next section, this method is extended to problems with more than one
assembly characteristic.

2.7 Tolerance Allocation in Assemblies with More Than One
Quality Characteristic 

This section is based on the paper, “Least-Cost Tolerances—II.”3 Let us
assume that an assembly, consisting of five components, has two quality
characteristics, X and Y. Let the relationships among the characteristics be as
follows:

So, 

In general, let us assume that an assembly has m characteristics with the fol-
lowing relationships among the tolerances:

(2.79)          

Each of the above m relationships is a constraint.

Final Ti

Ci (Cost of Manufacture)  
($)

A 0.0016   47.59
B 0.0053  115.78
C 0.0015         44.52
D 0.0005   27.19
E 0.0005   23.00
G 0.0025  62.97

Total 0.0120  321.05

X X1 X2 X3 X4 X5+ + + +=

Y X2 X3 X5–+=

Tx T1 T2 T3 T4 T5+ + + +=

Ty T2 T3 T5+ +=

T 1( ) N1iTi

i=1

k

Â=

T 2( ) N2iTi

i=1

k

Â=

T m( ) NmiTi

i=1

k

Â=



The total manufacturing cost that has to be minimized is

 

Now the problem can be stated as: Find T1, T2, …, and Tk so as to minimize
, subject to , for j = 1, 2, …, m, and Ti > 0, for all i.

This problem can be solved using LaGrange multipliers, with one LaGrange
multiplier for each constraint. The objective function for the unconstrained
optimization problem is

(2.80)

The values of T1, T2, …, Tk and l1, l2, …, and lm [(k + m) decision variables]
can be obtained by solving the following equations:

and

2.8 Tolerance Allocation When the Number of Processes 
is Finite 

The formulation of the tolerance problem in the previous section assumes
that the decision variables T1, T2, …, Tk are continuous, which indirectly
assumes that there is an infinite number of processes available. This may not
be realistic in real-life applications. Let us now consider the situation for
which there is only a finite number of processes available.

2.8.1 Assumptions

1. The assembly has k components.
2. There are li processes available for machining component i (for

generating characteristic Xi), i = 1, 2,…, k.

C hiTi
ai

i=1

k

Â=

C �i=1
k hiTi

ai= �i=1
k N jiTi T j( )=

F hiTi
ai  + l1 N1iTi T 1( )–

i=1

k

Â º l2 N2iTi T 2( )–
i=1

k

Â º+ +
i=1

k

Â=

lm NmiTi T m( )–
i=1

k

Â+

dF
dTi
-------- 0, for i 1, 2,º, k= =

dF
dl j
-------- 0, for j 1, 2,º, m= =
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3. The cost per unit time of process j for part i is Cij, i = 1, 2,…, k and
j = 1, 2,…, li.

4. The relationship among the tolerances is assumed to be

5. The process capability ratio for all the processes is G; that is,

(2.81)

where tij is the natural process tolerance of process j used for com-
ponent i, i = 1, 2,…, k and j = 1, 2,…, li. 

6. The unit cost of machining component i on process j is Cij, i = 1, 2,…,
k and j = 1, 2,…, li. 

The problem is to find T1, T2,…, Tk that minimize the total cost of manufacture
and satisfy all constraints. This problem can be formulated as a mathematical
programming problem using zero–one decision variables.5

2.8.2 Decision Variables

2.8.3 Objective Function

Minimize

2.8.4 Constraints

The first constraint guarantees that the sum of the tolerances of components
does not exceed the given tolerance on the assembly characteristic:

I.  

(2.82)

T NiTi
i=1

k

Â=

Ti

tij
----- G, for all i and j=

Yij 1 yes( ), if process j is selected for component i=

0 no( ), if process j is not selected for component i=

C CijYij
j=1

li

Â
i=1

k

Â=

Ti T Gti , jYi , j T£
i=1

li

Â
i=1

k

ÂÆ£
i=1

k

Â

ti , jYi , j
i 1=

li

Â
i=1

k

Â T
G
---- (1 constraint)£
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The second constraint set ensures that exactly one process is selected for each
of the k components.

II.

(2.83)

This is a zero–one integer programming problem and can be solved by a linear
programming software such as LINDO.

Example 2.8
An assembly consists of three components. The relationship among the quality
characteristics is as follows:

X = X1 - X2 + X3

The processes available for processing the components along with the respec-
tive unit costs and the natural process tolerances are as follows:

The tolerance on the assembly characteristic is 0.011, and the ratio of the com-
ponent tolerance to the natural process tolerance is 1.3 (G) for all components.
Formulate this as a zero–one integer programming problem to find T1, for i =
1, 2, and 3 to minimize the total cost of manufacture.

2.8.5 Formulation

2.8.5.1 Decision Variable

Process t Unit Cost ($)

Component 1
1 0.001 50
2 0.002 35
3 0.005 25

Component 2
1 0.001 60
2 0.003 35

Component 3
1 0.004 30
2 0.006 18

Yij

j=1

li

Â 1, for  i 1, 2, 3,º, k k constraints( )= =

Yij 1, if process j is selected for manufacturing component i=

0, if process j is not selected for manufacturing component i=
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2.8.5.2 Objective Function

Minimize

2.8.5.3 Constraints

1.  

2.

2.8.5.4 Solution

This problem was solved using LINDO, and the solution was obtained as follows:

Y12 = 1.0 (Y11 = Y13 = 0); process 2 is selected for component 1.
Y21 = 1.0 (Y22 = 0); process 1 is selected for component 2.
Y31 = 1.0 (Y32 = 0); process 1 is selected for component 3.

Now, the tolerances are determined as follows:

t12 = 0.002; hence, T1 = 0.002 ¥ 1.3 = 0.0036.
t21 = 0.001; hence, T2 = 0.001 ¥ 1.3 = 0.0013.
t31 = 0.004; hence, T3 = 0.004 ¥ 1.3 = 0.0052.

The sum of Ti’s is 0.0101.
It may be noted that this example problem, being small, can be solved by

hand and does not require a formulation and software to solve. The advan-
tage of formulation and software is obvious in large-scale problems.

In all the tolerance allocation problems we have studied so far, the follow-
ing linear relationship among the tolerances was assumed:

X = X1 ± X2 ± X3 ± … ± X5

This assumption about the linear relationship will be relaxed in the next section.

C CijYij
j=1

li

Â
i=1

k

Â=

50 Y11 35 Y12 25 Y13 60 Y21 35 Y22 30 Y31 18 Y32+++ + ++=

tijYij
T
G
----£

j=1

li

Â
i=1

k

Â
0.001 Y11 0.002 Y12 0.005 Y13 0.001 Y21 0.003 Y22++ ++

0.004+ Y31 0.006 Y+ 32 0.011/1.3 0.0085( )£

Yij

j=1

li

Â 1, for i 1, 2, 3,º, k 3 constraints( )= =

Y11 Y12 Y13+ + 1.0=

Y21 Y22+ 1.0=

Y31 Y32+ 1.0=
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2.9 Tolerance Allocation for Nonlinear Relationships 
among Components 

So far, we assumed that Ni = 1 for all i in the equation:

 

Ni represents the contribution of dimension Xi (characteristic Xi) to the
assembly characteristic X. This is also the sensitivity of assembly characteris-
tic X to characteristic Xi and is equal to the ratio of the change in the assembly
characteristic X to a small change in Xi. That is, if X = f(X1, X2, …, Xk), then: 

(2.84)

which can be used in the relation:

Example 2.9
Consider the simple helical spring shown in Figure 2.13. There are two assem-
bly characteristics of interest to the user: 

1. Spring rate (R), which is equal to:

(2.85)

where E = modulus of elasticity in shear; dw = wire diameter; di =
inside diameter of spring; and M = number of active coils.

2. Outside diameter of the spring (do), which is equal to:

(2.86)

We have to find  the contribution of dw  to R ;
 the contribution of di to , the contri-

bution of M to , the contribution of di  to d0;
, the contribution of dw to do.

NiTi

i=1

k

Â T=

Ni
∂f X1, X2, º, Xk( )

∂Xk
----------------------------------------------- , i 1, 2,º, k= =

NiTi

i=1

k

Â T=

R
E dw( )4¥

8 di dw+( )3 M¥
--------------------------------------=  lb/in.( )

d0 di 2dw+=

dR( ) d dw( )( )§ Ndw

R= ,
dR( ) d dj( )( )§ Ndi

R ,= R; dR( ) dM( )§ NM
R=

R; d d0( )( ) d di( )( )§ Ndi

d0=
d d0( )( ) d dw( )( )§ Ndw

d0=
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Let the nominal sizes of dw , di, and M be 0.1", 1.0", and 10", respectively, and
let E = 11.5 ¥ 106:

That is, 

That is,  

 

 

Let the specified tolerance on R be BR ± 0.54 lb/in. (TR = 2 ¥ 0.54 = 1.08) and
the tolerance on do be 0.020" ( = 2 ¥ 0.020 = 0.04").

FIGURE 2.13
Spring in Example 2.9.

do

dw (0.1 in.)

N = 10  (no. of active coils)

di

dR
d dw( )
--------------

E
8M
---------  4dw

3

di dw+( )3
-----------------------

3dw
4

di dw+( )4
-----------------------–=

 10.5 106¥
8 10¥

------------------------ 4 0.13¥
1 0.1+( )3

----------------------- 3 0.14¥
1 0.1+( )4

-----------------------– 402.50= =

Ndw

R 402.50.=

dR
dM
---------

Edw
4

8 di dw+( )3
-------------------------- 1

M2
-------¥–=

 11.5 106 0.14¥¥
8 1.1( )¥ 3

---------------------------------------- 1
100
---------¥=

 1.08–=

NM
R  = 1.08.

d do( )
d di( )
------------- 1 Ndi

do= =

d do( )
d dw( )
-------------- 2 Ndw

do= =

Bdo
 ± Tdo



The problem is to find the optimum tolerances on the component charac-
teristics: dw, di, and M, so that the total cost of manufacture is minimized. The
constraints are

402.5 T1 + 37.99 T2 + 1.08 T3 £ 1.08 (2.87)

and

2 T1 + T2 £ 0.04 (2.88)

The constraint in Eq. (2.84) relates the tolerances on dw , di, and M to the given
tolerance on R and the constraint in Eq. (2.85) relates the tolerances on dw and
di to the given tolerance on do.

A suitable objective function such as the cost minimization objective func-
tion given earlier in Eq. (2.63) can be used in this problem; that is, minimize:

(2.89)

Using the LaGrange multiplier, the unconstrained objective function becomes:

(2.90)

Now, the unknowns, T1, T2, T3, l1, and l2, can be found by differentiating
Eq. (2.87) with respect to these variables and setting the resulting derivatives
to zero. This problem can also be solved using nonlinear programming soft-
ware such as GINO.

2.10 Other Topics in Tolerancing

This chapter does not cover all the methods for solving tolerance allocation
problems. Dynamic programming can be effectively used to allocate the
assembly tolerance among the components. Zhang and Huq10 give an excel-
lent review of tolerancing techniques. A recent problem is sequential toler-
ance control, suitable for parts moving through a sequence of operations
specified in the process plan.4,8 It uses real-time measurements to sequentially
and selectively adjust the target point of machining operations to maximize
the final output quality. Wheeler et al.8 developed a probabilistic approach to
select an optimum subset of technological processes required to execute a
process plan under a conventional tolerance control strategy. 

C hiTi
ai

i=1

3

Â=

F hiTi
ai l1 402.5 T1 37.99 T2 1.08 T3 1.08–+ +[ ]+

i=1

3

Â=

 l2 2 T1 T2 0.04–+[ ]+
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2.12 Problems

1. In a shaft/sleeve assembly, the inside diameter of the sleeve (X1)
follows normal distribution with a mean of 20 and a standard devi-
ation of 0.3. The outside diameter of the shaft (X2) follows normal
distribution with a mean of 19.6 and a standard deviation of 0.4. The
specification for the clearance between the mating parts is 0.5 ± 0.40.
a. What fraction of assemblies will fail to meet the specification

limits? 
b. Ignore the values of the means and standard deviations of X1 and

X2 given above. Find T1 and T2 (tolerances of X1 and X2) using the
additive and probabilistic relationships, assuming T1 = 1.5 T2. 

2. Consider an assembly consisting of three components. The length
of the assembly (X) is the sum of the lengths of the three compo-
nents, X1, X2, and X3, which are normally distributed with means
1.00, 3.00, and 2.00, respectively. The proportions of X, X1, X2, and
X3 outside the respective specification limits are specified as 0.0027.
Assume that the variances of X1, X2, and X3 are equal and that the
means of X1, X2, and X3 are equal to the respective nominal sizes. 



a. What are the specification limits for X1, X2, and X3?
b. What are the tolerances for X1, X2, and X3, if additive relationship

is used? Assume that T1 = T2 = T3, and that the specification limits
for the assembly characteristics are 6 ± 0.006.

3. Three resistors are to be connected in series so that their resistances
add together for the total resistance. One is a 150-ohm resistor and
the other two are 100-ohm resistors. The respective specification
limits are 150 ± 7.5 and 100 ± 6. If the resistances of the three resistors
are normally distributed and the tolerance for the resistance of each
resistor is equal to 6 ¥ the respective standard deviation,
a. What are the two values within which the total resistance will

lie 99.73% of the time?  
b. How many standard deviations from the nominal value will the

limits of the additive tolerance for the total resistance lie? 
4. Consider an assembly characteristic X = X1 + X2 - X3. The specifi-

cation (tolerance) limits on X are 3.00 ± 0.05 in. Let the character-
istics X1, X2, and X3 be normally and independently distributed
with means m1 = 0.5 in., m2 = 1.50 in., and m3 = 1.00 in., respectively.
The variances of the characteristics are equal. The processes are
selected such that 99.73% of the characteristics fall within the tol-
erance limits. The means of the characteristics are equal to the
respective basic sizes. It is desired that 99.9937% of the assembly
characteristic falls within the tolerance limits 3.00 ± 0.05 in. Deter-
mine the tolerances (Ti, i = 1, 2, and 3) on the characteristics X1, X2,
and X3 using the probabilistic tolerance relationship.

5. Consider an assembly such that its characteristic X is X = X1 +
X2, where X1 and X2 are the characteristics of the components.
The characteristics X1 and X2 follow uniform distribution within
the respective lower and upper tolerance limits. Assume that the
tolerance limits of X1 and X2 are equal. The assembly tolerance
(T) is equal to 0.002. Find the tolerances on X1 and X2 such that
100% of the values of the assembly characteristic X is contained
within its tolerance limits.

6. An assembly consists of three components. The relationship between
the assembly characteristic X and the component characteristics is X =
X1 - X2 - X3. The processes available for machining these component
characteristics and their natural process tolerances are as follows:

Component 1 Component 2 Component 3
Process t Process t Process t

1 0.0001 1 0.0001 1 0.0004
2 0.0002 2 0.0002 2 0.0005
3 0.0004 3 0.0004 3 0.0006
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The tolerance on the assembly dimension is 0.0008. Find the toler-
ances on X1, X2, and X3. Assume that G = 1.3 and that the component
characteristics are normally distributed. Use the technique devel-
oped by Mansoor. Please try to achieve a value of G which is as close
as possible to 1.3, but not less than 1.3.

7. In the above problem, assume that the actual shifts between the
means and the respective basic sizes of the component character-
istics are as follows:

Component 1: Actual shift = –1�2  of the maximum shift allowed
(mean is located to the left of the basic size).
Component 2: Actual shift = + maximum shift allowed (mean is
located to the right of the basic size).
Component 3: Actual shift = + 1�2  of the maximum shift allowed. 
Estimate the proportion of undersized and oversized assemblies.

8. An assembly consists of three components. The relationship among
the quality characteristics is: X = X1 + X2 - X3. The processes for
generating these characteristics with the respective unit costs and
natural process tolerances are given below:

The tolerance on the assembly characteristic is 0.0008. Formulate
(that is, define the decision variables and write the objective function
and constraints) this problem as a zero–one integer programming
problem to find Ti, i = 1, 2, and 3, that minimize the total unit cost
of manufacture and achieve a G value that is at least 1.3. (Do not
solve for Ti).

9. An assembly consists of five components. The manufacturing costs
of these components are given by  where Ti is the tolerance
on the characteristic of component i and ai and hi are given in the
following table:

Component 1 Component 2 Component 3

Process t
Unit 
Cost Process t

Unit 
Cost Process t

Unit 
Cost

1 0.0001 $15 1 0.0001 $13 1 0.0004 $15
2 0.0002 $7 2 0.0002 $8 2 0.0005 $11
3 0.0004 $5 3 0.0004 $6 3 0.0006 $9

i aaaai hi

1 –0.50 1.50
2 –0.80 1.00
3 –0.70 1.80
4 –0.60 0.90
5 –0.40 1.20

Ci hiTi
ai=
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The assembly tolerance is specified as 0.01 and is related to the
component characteristics as T = T1 + T2 + T3 + T4 + T5. 
Find the tolerances Ti, i = 1, 2, 3, 4, and 5, so that the total cost is
minimized and the tolerance relationship is satisfied.

10. Consider the problem analyzed by Mansoor in his paper.6 Please
make the following change in the assumption made by him: Xi

follows a beta distribution with parameters g = h = 2.0, for all i. Keep
all other assumptions. Derive all relevant equations and describe
the steps of a solution procedure by which we can obtain the toler-
ances of the k components of an assembly.

11. Consider a dc circuit in which the voltage, V, across the points is
required to be in the range 100 ± 2 volts. The specifications on the
current I and the resistance R are 25 ± TI/2 and 4 ± TR/2, respec-
tively. The voltage V = IR. The cost of manufacturing a resistance
with tolerance TR is 5/TR and the cost of a current source with
tolerance TI is 2/TI. Determine the tolerances TI and TR so that the
total cost is minimized.

12. An assembly consists of five components. The manufacturing costs
of these components are given by , where Ti is the tol-
erance on the characteristic of component i and ai and hi are given
in the following table:

The assembly tolerance should not exceed 0.02. The relationship
among the assembly characteristic and the component character-
istics is

 

The nominal sizes of X1, X2, X3, X4, and X5 are 1.0, 1.5, 1.0, 2.0, and
1.0, respectively. Find the tolerances on Xi that minimize the total
unit manufacturing cost and satisfy the tolerance relationship. 

13. An assembly characteristic is related to the characteristics of the
three components in the assembly by X = 2X1 – X2 + X3. The
processes available for manufacturing the components along with

i aaaai hi

1 –1.00 1.00
2 –1.00 1.50
3 –1.00 1.80
4 –0.50 1.00
5 –1.00 1.00

Ci hiTi
ai=

X
X1 X2 X3 X4¥¥¥

X5
--------------------------------------------=
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the associated unit costs and the natural process tolerances are as
follows: 

The tolerance on X is 0.006 and the ratio of the component toler-
ance to the natural process is 1.3 (G) for all components. Formulate
(that is, define the decision variables and write the objective func-
tion and constraints) this problem as a zero–one integer program-
ming problem to find Ti, i = 1, 2, and 3, that minimize the total unit
cost of manufacture. (Do not solve for Ti). 

14. An assembly characteristic is related to the characteristics of the
three components in the assembly by X = X1 + X2 + X3. The processes
available for manufacturing the components along with the asso-
ciated unit costs and the natural process tolerances are as follows:

The tolerance on X is 7.0 and the ratio of the component tolerance to
the natural process tolerance is 1.3 (G) for all components. The char-
acteristic Xi follows a beta distribution with parameters g = h = 3.0
for all i. You can assume that the distribution of X is approximately
normal. Make all other assumptions made by Mansoor6 and find
(solve) the tolerances Ti for I = 1, 2, and 3, using his method so that
the actual value of G is in the range (1.3–1.35). (This means that
the actual G must not be less than 1.3 and not be greater than 1.35.)
You need to find any one set of Ti that satisfy this requirement.

Component 1 Component 2 Component 3

Process t
Unit 
Cost Process t

Unit 
Cost Process t

Unit 
Cost

1 0.001 $100 1 0.001 $120 1 0.002 $90
2 0.002 $80 2 0.003 $90 2 0.003 $80
3 0.003 $65 3 0.004 $80 3 0.005 $50

Component 1 Component 2 Component 3
Process t Process t Process t

1 2.0 1 1.0 1 1.0
2 3.0 2 2.0 2 3.0
3 4.0 3 3.0 3 4.0
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Loss Function

CONTENTS
3.1 Introduction
3.2 Development of Loss Function
3.3 Loss Functions for Different Types of Quality Characteristics

3.3.1 Nominal-the-Best Type (N Type)
3.3.1.1 Equal Tolerances on Both Sides of the

Nominal Size
3.3.1.2 Unequal Tolerances on Both Sides of the Nominal

Size
3.3.2 Smaller-the-Better Type (S Type)
3.3.3 Larger-the-Better Type (L Type)
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3.4.2 Some Recent Developments in Robust Design

3.4.2.1 System Design
3.4.2.2 Parameter Design
3.4.2.3 Tolerance Design

3.5 References
3.6 Problems

3.1 Introduction

Let us consider the diameter of a shaft with specifications 1" ±  0.04", which
means that the nominal value is 1"(B), the lower specification limit (LSL) is
0.96", and the upper specification limit (USL) is 1.04". Let the diameter (X)
follow a density function f(x) with a mean of µ and a variance of σ2.
Assume that the cost of reworking an oversized shaft is Cw and the cost of
scrapping an undersized shaft is Cs. We will also assume that a shaft that
is reworked will fall within the specification limits (this may not be realis-
tic, but this assumption is being made to simplify the expression). Let the
manufacturing cost per shaft be Cm. Then, the expected cost per shaft can
©2001 CRC Press LLC



           
be written as:

 (3.1)

In Eq. (3.1), Cm is a constant with respect to X (the diameter), so let us delete
it from the expected cost expression. Figure 3.1 contains the plot of the cost
per shaft as a function of X. This graph assumes that there is no cost (other
than the manufacturing cost) incurred, as long as the diameter is between the
LSL (0.96") and the USL (1.04"). It is not a valid approach, however, because
all the shafts produced at 1.00" should carry a very low quality-liability cost that
could even be $0 if they are perfect. They would mate with bearings or sleeves
perfectly and not wear out prematurely. In other words, these shafts would
not cause warranty costs, customer inconvenience, or loss of goodwill for the
manufacturer.

Let us consider a shaft whose diameter is 0.970", which is still within the
specification limits (0.96"–1.04") but on the loose side. This shaft will fit
loosely with a bearing or sleeve (unless matched), increasing the probability
of customer complaint and possibly failing prematurely. This example illus-
trates that even though the allowable range of diameters is 0.96"–1.04", the
manufacturer must strive to keep the diameters as close as possible to 1”,
which becomes the target value. 

Let us consider another example involving two types of resistors. The quality
characteristic is the resistance that has a tolerance range from 950 to 1050 ohms.
The nominal value is 1000 ohms. The histograms of the resistances of 50 resis-
tors of each type are given in Figures 3.2a and b. It can be seen that even
though the ranges of the resistances of both types are within the tolerance
range, the width of the range of type-A resistors is much narrower than the
width of the range of type-B resistors. It is obvious that customers prefer
type-A resistors to type-B, because a randomly selected type-A resistor has a

FIGURE 3.1
Cost versus diameter.

Cost

Diameter

CS

1.041.000.96

Cw

E TC( ) Cm Cs f x( ) x Cw f x( ) xd
USL

•

Ú+d
•–

LSL

Ú+=
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larger probability of being closer to the target value than a randomly selected
type-B resistor. 

Studies10 have also shown that products with quality characteristics follow-
ing normal distributions result in less failures, lower warranty costs, and

FIGURE 3.2
(a) Histogram of resistances, type A. (b) Histogram of resistances, type B.

950
a.

Nominal Size = 1000 1050

Resistance

950
b.

Nominal Size = 1000 1050

Resistance
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higher customer satisfaction compared to products with quality characteris-
tics following a uniform distribution, even though the range of this uniform
distribution is within the tolerance range, resulting in zero proportion of
defectives. This is because the uniform distribution has a larger variance than
a truncated normal distribution with the same range. 

The above examples emphasize the fact that the traditionally used quality
metric—proportion of defectives that affect the internal failure costs—alone
is not sufficient to measure the quality of a product. They also indicate that
the parameters of the probability distribution of the quality characteristic of
the product affect the performance of the product, which impacts the external
failure costs. Even though external failure costs incurred after the product
leaves the premises of the manufacturer are widely used in industries, there
is no method available to predict these costs based on the parameters of the
distribution of the quality characteristic. The loss function developed by
Taguchi remedies this problem.10 

3.2 Development of Loss Function 

According to Taguchi, the cost of deviating from the target (1" in our first
example) increases as the diameter moves away from the target. This cost is
zero when the quality characteristic (X) is exactly equal to the target value,
denoted by X0 (see Figure 3.3). The cost of deviating from the target value is
given by the loss function derived as follows.

FIGURE 3.3
True cost curve.

Cost

Diameter

Cs

1.041.000.96

Cw
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The loss function, when the quality characteristic is X, is denoted by L(X).
This can be written as:

L(X) = L(X0 + X - X0)  (3.2)

Expanding the right-hand side using the Taylor series,

 

we obtain: 

 (3.3)

where  and  are the first and second derivatives of L(X), respec-
tively, evaluated at X0.

As per the assumption made earlier, the loss when the quality characteris-
tic, X, is equal to its target value, X0, is zero, and L(X0) is zero. Also, as the
function L(X) attains its minimum value when X is equal to X0, its first deriv-
ative (slope) at X0,  is zero. Let us neglect the terms of third and higher
orders. Then, Eq. (3.3) becomes:

 (3.4)

where k¢ =  is a proportionality constant. According to Taguchi, this
function represents the loss (in $) incurred by the customer, the manufacturer,
and society (due to warranty costs, customer dissatisfaction, etc.) caused by
deviation of the quality characteristic from its target value. The dimension of
(X - X0)

2 is the square of the dimension of X. For example, if X is the diameter
of a shaft measured in inches, then the dimension of (X – X0)

2 is inch2. As the
dimension of L(X) is $, the dimension of the proportionality constant,  has
to be $/(dimension of X)2. The derivation of k¢ for various types of quality
characteristics will be done later on.

Now we will derive the expected value of L(X) given in Eq. (3.4):

 

(3.5)

f X( ) f a X a–+( ) f a( ) X a–( )
1!

----------------- f ¢ a( ) X a–( )2

2!
-------------------- f ≤ a( ) º+ + +==Ë ¯

Ê ˆ

L X( ) L X0( ) X X0–( )L¢ X0( ) X X0–( )2

2!
-----------------------L≤ X0( ) º, + + +=

L¢ X0( ) L≤ X0( )

L¢ X0( ),

L X( )
L≤ X0( )

2
----------------- X X0–( )2=

 k¢ X X0–( )2, LSL X USL£ £=

L≤ X0( )
2

------------------

k¢,

E[L X( ) ] E k¢ X X0–( )2[ ] k¢E X X0–( )2[ ],==  assuming the LSL and USL

are contained within the range of X

k¢E X m– m X0–+( )2[ ]=

k¢E X m–( )2 2 X m–( ) m X0–( ) m X0–( )2+ +[ ]=

k¢ E X m–( )2 2 m X0–( )E X m–( ) E m X0–( )2+ +[ ]=
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where m and X0 are constants. As Var(X) = E(X - m)2, Eq. (3.5) can be written
as:

(3.6)

where E(X) = m, and Var(X) = s2. From Eq. (3.6): 

E[(X - X0)
2] = [s 2 + (m - X0)

2]  (3.7)

We will derive the proportionality constant,  and the estimates of E[L(X)]
for different types of quality characteristics in the next section. 

3.3 Loss Functions for Different Types
of Quality Characteristics

3.3.1 Nominal-the-Best Type (N Type)

3.3.1.1 Equal Tolerances on Both Sides of the Nominal Size

Tolerances for these types of characteristics are specified as  where B is
the nominal value and hence is the target value, and D is the allowance on
either side of the nominal size (the tolerance is 2D). The lower specification
limit and the upper specification limit are B -  D and B + D , respectively. Let
the rejection costs incurred by the manufacturer be Cs and Cw, when X is less
than LSL and X is greater than USL, respectively.

When the costs Cs and Cw are equal, the loss function is

(3.8)

Let Cs = Cw = C. It is assumed that when X = LSL or when X = USL, the loss,
L(X) = C may not be true. The resulting loss function is given in Figure 3.4:

(3.9)

E L X( )[ ] k¢ Var X( ) 2 m X0–( ) E X( ) m–[ ] m X0–( )2+ +[ ]=

 k¢ s 2 m X0–( )2+[ ]=

k¢,

B D,±

L X( ) k¢ X X0–( )2,  LSL X  USL, £ £=

 0, otherwise=

L LSL( ) k¢ LSL X0–( )2 k¢D2==

 C; hence=

k¢ C
D2
-----=
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The expected value of the loss function defined in Eq. (3.8) is

(3.10) 

= k¢ v2 (3.11)

where v2 is called the mean-squared deviation and is equal to:

(3.12)

The estimate of the expected loss defined in Eq. (3.11) is

 (3.13)

where 

 (3.14)

FIGURE 3.4
Loss when rejection costs are equal.
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The set A in Eq. (3.14) contains all observations in the range (LSL – USL). The
right-hand side of Eq. (3.14) is the unbiased estimator of Eq. (3.12) which is
also [s2 + (m–X0)

2]. Also, n in Eq. (3.14) is the total number of observations in
the sample batch collected to estimate the expected loss. Now we will show
that the right-hand side of Eq. (3.14) is an unbiased estimator of [s2 + (m -X0)

2],
assuming that all n observations are within the range (LSL – USL): 

As 

(3.15)

While estimating [s2 + (m - X0)
2], it is natural to use  in

which S2 is the sample variance (the unbiased estimator of s2) and  is the
sample mean (the unbiased estimator of m). But, it can be shown that [S2 +

 is a biased estimator of [s2 + (m - X0)
2], as follows:

As Var 

As  and Var 

 

(3.16)
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It can be seen from Eq. (3.16) that the estimator  overesti-
mates [s2 + (m - X0)

2] by  This bias will decrease as n increases.

Example 3.1
The specification limits for the resistance of a resistor are  ohms.
A resistor with resistance outside these limits will be discarded at a cost of
$0.50. A sample of 15 resistors yielded the following observations (in
ohms).

1020 1040 980 1000 980 1000 1010 1000 1030 970 1000 960 990 1040 960

Estimate the expected loss per resistor.

LSL = 950 
USL = 1050 
B = X0 = 1000
D = 50
Cs = Cw = $0.50

From Eq. (3.9): 

From Eq. (3.10):

The estimate of  where, as per Eq. (3.14): 

S2 X X0–( )2
+[ ]

s2

n----- .

1000 50±

L X( ) k¢ X–1000( )2, 950 X 1050£ £=

0, otherwise=

k¢ 0.50
502
---------- 2 10–4¥= =

E L X( )[ ] k¢ x 1000–( )2 f x( ) xd
950

1050

Ú=

E L X( )[ ] k¢v̂2,=

v̂2 1
15
------ Xi 1000–( )2

i AŒ
Â=
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The set A contains all the observations in the range (950 – 1050). Hence,

 

Now,

When the costs Cs and Cw are not equal, the loss function is 

(3.17)

It is assumed that when X = LSL, the loss L(X) = Cs , and when X = USL, the
associated loss L(X) = Cw. The resulting loss function is given in Figure 3.5.

FIGURE 3.5
Loss when costs are unequal.
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Based upon these assumptions: 

 

hence: 

 (3.18)

Similarly,

hence:

 (3.19)

Now the expected value of the loss function defined in Eq. (3.17) is

(3.20) 

 (3.21)

where: 

 (3.22)

is the part of the mean-squared deviation in the range from LSL to X0, and 

 (3.23) 

is the part of mean-squared deviation in the range from X0 to USL. The esti-
mate of the expected loss defined in Eq. (3.21) is

 (3.24)
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where:

 (3.25)

which estimates Eq. (3.22), and

(3.26)

which estimates Eq. (3.23). In Eqs. (3.25) and (3.26), n is the total number of
observations in the sample batch collected to estimate the expected loss. In
Eq. (3.25), the set A1 contains all observations in the range (LSL – X0). In Eq.
(3.26), the set A2 contains all observations in the range (X0 – USL).

Example 3.2
A manufacturer of a component requires that the tolerance on the outside
diameter be 5 ± 0.006". Defective components that are oversized can be
reworked at a cost of $5.00 per piece. Undersized components are scrapped
at a cost of $10.00 per piece. The following outside diameters were obtained
from a sample batch of 20 components:

Estimate the expected loss per piece.

LSL = 4.994 
USL = 5.006 
B = X0 = 5.000 
Cs = $10.00 
Cw = $5.00 

From Eq. (3.18),

v̂1
2 1
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2 1
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--------------- 10 106¥
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From Eq. (3.19), 

The expected value of the loss function per Eqs. (3.20) and (3.21) is

The estimate of the expected loss per Eq. (3.24) is

 

where, per Eq. (3.25),

 

As per Eq. (3.26):

So,
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If the manufacturer produces 50,000 units per month, then the expected loss
per month is 50,000 ¥ 1.67 = $83,500.00. 

3.3.1.2 Unequal Tolerances on Both Sides of the Nominal Size

Tolerances are specified as  Hence, the LSL is B – D1, the USL is B + D 2, and
the nominal size (which is the target value), is B:

 

(3.27)

As before, it is assumed that when X =  LSL, the loss L(X) = Cs , and when X =
USL, the associated loss L(X) = Cw. The resulting loss function is given in
Figure 3.6. Based upon these assumptions, 

hence, 

 (3.28)

FIGURE 3.6
Loss when tolerances are unequal.
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Similarly,

hence,

 (3.29)

The expected value of the loss function and its estimate are the same as given
in Eqs. (3.20) through (3.26), with LSL = B – D1 and USL = B + D 2.

Example 3.3
The specifications for the thickness of a gauge block are 1" . Defective
blocks that are undersized have to be scrapped at a cost of $12.00 a piece, and
the blocks that are oversized can be reworked at a cost of $5.00 a piece. The fol-
lowing are the actual thickness values of 15 blocks:

1.001 0.999 0.999 1.002 1.000 1.001 1.002 0.999 1.001 0.999
1.001 1.000 0.999 1.002 0.999

Estimate the expected loss per piece.

LSL = 0.999"
USL = 1.002"
B = X0 = 1.000"
Cs = $12.00
Cw = $5.00

L(X) = (X - X0)
2, 0.999" £ X £ 1.000"

= (X - X0)
2, 1.000" £ X £ 1.002"

= 0, otherwise

From Eq. (3.28),

and from Eq. (3.29),
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--------------- 8 106¥= =
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The expected value of the loss function per Eqs. (3.20) and (3.21) is

The estimate of the expected loss per Eq. (3.24) is

 

where per Eq. (3.25):

 

Per Eq. (3.26):

 

So,

3.3.2 Smaller-the-Better Type (S Type)

Tolerances for this type of characteristics are specified as X £ D , where the
upper specification limit is D. There is no lower specification limit for these
characteristics. It is assumed that the quality characteristic X is non-negative.
Let the rejection costs incurred by the manufacturer be Cw when X is greater
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than USL. Some examples of this type of characteristic include impurity,
shrinkage, noise level, flatness, surface roughness, roundness, and wear. The
implied target value, X0, is 0; hence, the loss function is

(3.30)

As in the case of other quality characteristics, it is assumed that the loss when
X = USL is Cw . The resulting loss function is given in Figure 3.7.

As per the assumption,

hence,

The expected value of the loss function defined in Eq. (3.30) is

(3.31)

 (3.32)

FIGURE 3.7
Loss for smaller-the-better type (S type).
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where v2 is the mean-squared deviation and is equal to:

 (3.33)

The estimate of the expected loss defined in Eqs. (3.31) and (3.32) is

 (3.34)

where 

 (3.35)

where n is the sample size and A is the set containing all observations in the
interval (0 - D).

Example 3.4
A manufacturer of ground shafts requires that the surface roughness of the sur-
face of each shaft be within 10 units. The loss caused by out-of-tolerance condi-
tions is $20.00 per piece. The surface roughness data on 10 shafts are given below: 

10 5 6 2 4 8 1 3 5 1

Compute the expected loss per shaft.

As Cw = $20.00 and D = 10, 

3.3.3 Larger-the-Better Type (L Type)

Tolerances for this type of characteristics are specified as X ≥ D, where the
lower specification limit is D. There is no upper specification limit for these
characteristics. Let the rejection costs incurred by the manufacturer be Cw,
when X is less than the LSL. Some of the examples of this type of character-
istic are tensile strength, compressive strength, and miles per gallon. The
implied target value, X0, is • and the loss function L(X) = k(X – X0)

2 is equal
to • for all values of X. To eliminate this problem, the L-type characteristic is
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transformed to an S-type characteristic using the transformation Y = 1/ X. Now,
Y becomes an S-type characteristic with an upper specification limit =  1/D,
hence the loss function for Y is

(3.36)

As in the case of other quality characteristics, it is assumed that the loss when
X =  D or when Y = 1/D is Cw . In Eq. (3.36), 

(3.37)

Now let us transform the variable Y back to the original variable X using the
transformation, X = 1/Y. Then, from Eq. (3.36), the loss function of X is

(3.38)

where is as per Eq. (3.37). The loss function is given in Figure 3.8.
The expected value of the loss function defined in Eq. (3.38) is

(3.39)

 (3.40)

FIGURE 3.8
Loss for larger-the-better type (L type).
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where v2 is the mean-squared deviation and is equal to:

 (3.41)

The estimate of the expected loss defined in Eqs. (3.39) and (3.40) is

 (3.42)

where 

 (3.43)

where n is the sample size and A is the set containing all observations ≥D,
which is the LSL.

Example 3.5
The producer of a certain steel beam used in construction requires that the
strength of the beam be more than 30,000 lb/in.2 The cost of a defective beam is
$600.00. The annual production rate is 10,000 beams. The following data (lb/in.2)
were obtained from destructive tests performed on 10 beams:

40,000 41,000 60,000 45,000 65,000 
35,000 41,000 51,000 60,000 49,000

What is the expected loss per year?

Cw = $600.00 
D = 30,000 
k¢ = 600 ¥ (30,000)2 = 5400 ¥ 108

The loss per year, then, is 214.20 ¥ 10,000 = $2,142,000.00.
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3.4 Robust Design using Loss Function

3.4.1 Methodology

The expected value of loss function as per (3.6) is

 

Let X be the quality characteristic of the assembly with a mean m, variance s2,
and target value X0. In order to minimize the expected loss of X, we should:

1. Make the mean of X, m = X0.
2. Minimize the variance of X, s2.

Let us assume that the quality characteristic of the assembly X is a known func-
tion of the characteristics of the components of the assembly, X1, X2, X3, º, Xk,
assuming k components in the assembly, given by:

(3.44)

As X is a function of the component characteristics X1, X2, º , Xk, it is clear
that the mean and variance of X (m and s2) can be controlled by controlling
(selecting, setting, etc.) the means of X1, X2, º, Xk denoted by m1, m2, º , mk and
the variances  As we saw in earlier chapters, the variances 
depend upon the processes, and the means (mi) depend upon the process set-
ting. The robust design that we are going to discuss now determines the val-
ues of m1, º , mk for given values of  so that E(X) = m = X0 and
Var(X) = s2 is minimized. The means can be set equal to the respective nom-
inal sizes, B1, B2, º , Bk.

The equations derived are valid for any probability density function of 
Let us expand e(x1, º, xk) about m1, m2, º, mk using the Taylor series and
neglect terms of order three and higher:

(3.45)

where  is the row vector equal to  = [m1, m2, º , mk] and  = ∂2e(◊)/∂Xi

evaluated at  = [m1, m2,º, mk]. Also,  = ∂2e(◊)/∂Xi∂Xj evaluated at  =
[m1, m2, º, mk].
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 Taking the expected value of both sides of Eq. (3.45):

(3.46)

as  and  are constants.
E(Xi) = mi, so E(Xi) – m = 0. Also, when i = j, 

and when i π j, 

Combining these results:

The covariance of Xi and Xj is 0, if Xi and Xj are independent.
Now, from Eq. (3.46), the mean of X is

  (3.47)

The quantity (m – X0) is called the bias and is to be minimized. From Eq. (3.47),
it is

 (3.48)

One of our objectives is to make the right-hand side of Eq. (3.48) equal to 0,
which yields:

(3.49)
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Now let us derive an expression for the variance of X, s2:

From Eqs. (3.45) and (3.47),

(3.50)

(X �m)2 is approximated by  Hence, the variance of X is

(3.51)

As: 

Hence, Eq. (3.51) is

(3.52)
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Now the problem of robust design can be formulated as follows.
Find the means m1, m2, º, mk that can be set equal to the nominal sizes B1, º ,

Bk so as to minimize:

subject to:

  (3.53)

Other applicable constraints can be added to the formulation in Eq. (3.53). It is
assumed that in Eq. (3.53), the variances of  and Cov(Xi, Xj) are known.
These can be estimated using the data collected on the Xi. For larger-the-better
type (L-type) characteristics, the target value is infinity, hence the constraint
given by Eq. (3.49) can be changed to a maximization objective function. Simi-
larly, for smaller-the-better (S-type) characteristics, the target value is zero,
hence the constraint may be changed to a minimization objective function.

The formulation given in Eq. (3.53) is a nonlinear programming problem
with both nonlinear objective function and constraint. The following exam-
ple illustrates the solution of this formulation for a simple assembly.

Example 3.6
The assembly characteristic of a product, X, is related to the component char-
acteristics, X1 and X2, by the following relation: X = X1 X2. The target value of X
is 35.00. Formulate the robust design problem to find the means (nominal sizes)
of X1 and X2. Assume that X1 and X2 are independent and that the variances of
X1 and X2, which are  and , are known. It is given that e(X1, X2) = X1X2.

First we find  and  for all i and j:
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FORMULATION
Find m1 and m2 so as to minimize:

subject to: 

That is, find m1 and m2 so as to minimize  subject to m1m2 = 35.
This simpler problem can be solved using the LaGrange multiplier

method,1 which converts the above constrained problem into an uncon-
strained problem. The unconstrained problem here is to find m1 and m2 so as
to minimize  where l is the LaGrange multi-
plier. The three unknowns—m1, m2, and l—can be found by setting the partial
derivatives of F with respect to these variables set equal to 0:

(i)

(ii)

(iii)

From Eqs. (i) and (ii), m1/m2 = s1/s2 and using Eq. (iii): 
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which gives 

If s1 = 1.0 and s2 = 10.0, then m1 =  = 1.87 and m2 =  = 18.71.
The optimum variance (optimum value of the objective function) is (18.71)2 ¥
1.0 + (1.87)2 ¥ 100 = 699.75, and the optimum standard deviation is 26.45. Non-
linear programming software such as GINO can be used for solving difficult
formulations.

The usual practice is to arbitrarily set the values of the nominal sizes
(means of the component characteristics) that yield the nominal size for the
assembly characteristic, ignoring the variances of the component characteris-
tics. When these nominal sizes are arbitrarily set, then the resulting variance
of the assembly characteristic according to Eq. (3.52) can be reduced only by
reducing the variances of the component characteristics, which could be very
time consuming and expensive. For example, let us assume that the design
engineer arbitrarily sets the values of m1 and m2 as 5 and 7, respectively, which
yield the mean of X = 35, the target value, but the resulting variance of X is

 

and the standard deviation is 50.49, which is larger than the optimum value
of 26.45. The only way to reduce this large variance is to reduce  and  by
sorting and matching the components or tightening the tolerances of the com-
ponents (assuming the processes are fixed), which are both expensive to the
manufacturer. Out of all the infinite combinations of m1 and m2 that yield the tar-
get value of X (35 in this example), robust design formulation selects the opti-
mum values of m1 and m2 that minimize the variance of X. This minimizes the
expected loss, wherein lies the advantage of robust design, which meets the
requirement of concurrent design.

3.4.2 Some Recent Developments in Robust Design

As was evident from the discussion in the preceding section, robust design
improves the quality of a product by adjusting the means of the component
characteristics so that the variance of the assembly characteristic is minimized
and the mean of the assembly characteristic is equal to its target value. The
reduction in variance is equivalent to decreasing the sensitivity of the assembly
characteristic to the noise or uncontrollable factors in the design, manufactur-
ing, and functional stages of the product. Robust design, a quality assurance
methodology, is applied to the design stage, where the nominal sizes of the com-
ponents are determined. Since Taguchi’s initial work in this area, many
researchers have expanded his contribution. Oh6 provides a very good over-
view of this work. Efforts in the design stages of products have made a dramatic

m1 35
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impact on the quality of these products. The design phase is divided into three
parts: system design, parameter design, and tolerance design.11 

3.4.2.1 System Design

In this step, the basic prototype of the product is developed to perform the
required functions of the final product, and the materials, parts, and manu-
facturing and assembly systems are selected. 

3.4.2.2 Parameter Design

The optimum means of the design parameters of the components are selected
in this phase so that the product characteristic is insensitive to the effect of
noise factors. Robust design plays a major role in this step. 

The key to developing the formulation of the robust design problem in Eq.
(3.53) is the function, e(X1, X2, ..., Xk), in Eq. (3.44) which relates the assembly
characteristic X to the component characteristics, X1, X2, ..., Xk. In most real-
life problems, that function may not be available. Taguchi recommends
design of experiments in such cases.  He developed signal-to-noise ratios
(known as S/N ratios) to combine the objective function of minimizing the
variance and making the mean equal to the target value. This is more helpful
for larger-the-better (L-type) characteristics with a target value of infinity and
smaller-the-better type (S-type) characteristics with a target value of 0. Unal
and Dean,11 Chen et al.,2 and Scibilia et al.8 are some of the authors who have
extended the work of Taguchi. Multiple criteria optimization has been con-
sidered by Chen et al.2 and Song et al.9 Genetic algorithms combined with the
finite element method have been used in robust design by Wang et al.,12 and
evolutionary algorithms have been used by Wiesmann et al.13 

3.4.2.3 Tolerance Design 

This step is carried out only if the variation of the product characteristic
achieved in parameter design is not satisfactory. Here, optimum tolerances
that minimize the total cost are determined. The optimization techniques
used in this step include response surface methodology, integer program-
ming, nonlinear programming, and simulation.3,4 
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3.6 Problems

1. The specification limits of the internal diameter of a sleeve are
1.5 ± 0.005. The costs of scrapping an oversized sleeve and of
reworking an undersized sleeve are $50.00 and $20.00, respectively.
The internal diameters of 20 sleeves randomly selected from the
production line are as follows:

Estimate the expected loss per sleeve.
2. The thickness of a spacer has to lie between 0.504 and 0.514. The

cost of rejecting a sleeve is $10.00. Ten spacers were measured,
yielding the following readings:

Estimate the expected loss per month, if the production quantity
per month is 100,000.

1.502 1.499 1.500 1.498 1.497 1.504 1.503
1.503 1.500 1.499 1.498 1.501 1.497 1.496
1.497 1.504 1.501 1.500 1.496 1.499

0.508 0.509 0.510 0.512 0.506
0.513 0.510 0.508 0.511 0.512
©2001 CRC Press LLC



3. The tensile strength of a component has to be greater than or equal
to 20,000 tons per square inch(ton/in.2). The cost of failure of a
component with strength less than 20,000 ton/in.2  is $300.00. Tests
of 10 components yielded the following tensile strengths:

 

Estimate the expected loss per component.
4. The surface roughness of a surface plate cannot exceed 10 units.

The cost of rework of a plate with surface roughness greater than
10 units is $100.00. Twelve surface plates had the following surface
roughness values:

Estimate the expected loss per surface plate.
5. Suppose that you asked an operator to collect n observations and

estimate the mean-squared deviation, V2, of a nominal-the-best
type characteristic. The operator, by mistake, computed the sample
variance, S2, instead. By the time the operator realized his mistake,
he lost all the values of the individual observations (that is, the Xi).
He could give you only the following values:
S2 = 10.0 

= 1.5 (sample mean) 
= 1.4 (target value) 

n = 10 (sample size) 
He also reported to you that all 10 observations were within the
range (LSL – USL).
Compute an estimate of the mean-squared deviation using the
above information.

6. An assembly consisting of three components has the following
relationship between its assembly characteristic and the component
characteristics: 

 

where E is a known constant. Assume that the standard deviation
of Xi is si for i = 1, 2, and 3 and is given. Formulate this as a robust
design problem in which the decision variables are the nominal
sizes of the Xi (Bi), which are equal to the respective means (mi).
Assume that the Xi are independent of each other.

21,000 30,000 35,000 40,000 25,000
32,000 28,000 45,000 50,000 30,000

2 4 5 7 6 3 1 9 7 8

X

X0

X
EX1

4

X1 X2+( )3X3

---------------------------------=
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Process Capability

CONTENTS
4.1 Introduction
4.2 Preliminaries
4.3 Process Capability Indexes and Their Limitations

4.3.1 Process Capability
4.3.2 Process Capability Ratio
4.3.3 Cpk Index
4.3.4 Cpm Index
4.3.5 Ppk Index
4.3.6 Pp Index

4.4 Steps for Estimating Process Capability Indexes
4.5 Estimators of Process Capability Indexes

4.5.1 Process Capability Ratio
4.5.2 Cpk Index
4.5.3 Cpm Index

4.6 Probability Distributions of the Estimates of Process 
Capability Indexes
4.6.1 Cp Index
4.6.2 Cpk Index
4.6.3 Cpm Index

4.7 Process Capability Indexes for Non-Normal Populations
4.8 References
4.9 Problems

4.1 Introduction 

From earlier discussions in previous chapters, it can be seen that almost all
the quality control problems can be solved if the following conditions for
manufacturing the product are met: 

1. The quality characteristics are within the appropriate specification/
tolerance limits determined based on customers’ requirements.
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2. The variability of the quality characteristics is minimized as much
as possible.

3. The mean of each quality characteristic is as close as possible to
the target value of the characteristic. 

Condition 1 eliminates the products that are defectives (outside the speci-
fication limits), while conditions 2 and 3 reduce the proportion of defectives
and enhance the consistency of the performance of the products around the
target values of their quality characteristics. Taguchi’s loss function captures
the effects of both conditions 2 and 3.  

Process capability analysis relates the mean and the variance of the distri-
bution of a quality characteristic to the specification/tolerance limits and
gives numerical measures of the extent to which the above conditions are
met. In this chapter, some of the commonly used indexes to measure process
capability are discussed. 

4.2 Preliminaries

Process capability matches the capability of the process with the range of the
specification/tolerance interval for a given quality characteristic. The capabil-
ity of the process is measured in terms of the range of all possible values of
the quality characteristic. This is the range of all the values of the characteris-
tic of the component/product in a given lot or batch if the user is interested in
measuring the capability of the process with respect to that lot. In this case,
the population consists of the values of the characteristic in the lot only so the
size of the population is finite. On the other hand, it can be the range of all
possible values of the characteristic that the process can generate under some
specified conditions, if the user wants to measure the capability of the process
under those conditions. Here, the population is the set of all possible values
that the process can generate under those conditions, thus its size is infinite.

It is obvious that if the range of the distribution of the quality characteristic
is less than the range of the specification (tolerance) interval, then the number
of nonconforming products or defectives will be zero. On the other hand, if
the range of the characteristic is wider than the specification range, then the
process is bound to produce defectives.  The exact range of the values of a
characteristic of the items in a lot (finite population) or of the range of all pos-
sible values that a process can generate (infinite population) can be obtained
exactly only if all these values are measured (ignoring measurement error).
This requires 100% inspection, which may not be feasible in all cases or, even
if feasible, may not be economical.  The only alternative is to take a sample
batch of parts from the lot or from the process while it is running in the in-
control state (Chapter 8), measure the values of the characteristic of all the
items in that batch, and make inference about the range of all the values in
©2001 CRC Press LLC



                                                                                                                                  
the population (finite or infinite) using the sample information.  This is pos-
sible because the ranges of the values of the probability distributions can be
expressed as functions of their parameters, especially their standard devia-
tions. As an example, the ranges pertaining to a normal distribution, the most
commonly used distribution in statistical quality control, are given in the
Table 4.1. The results in this table are valid only if:

1. The probability distribution of the quality characteristic generated
by the process is exactly normal.

2. The exact values of the mean of the distribution, µ, and the standard
deviation of the distribution, σ, are known.

For example, consider a turning lathe, which is used to machine the outside
diameter of a batch of shafts. Let the distribution of the outer diameters
generated by the lathe be normally distributed with a mean µ = 1" and a
standard deviation σ = 0.0005". Then, 99.9937% of the shafts processed on
this machine will have their outside diameters within the interval from
0.998" (1 – [4 × 0.0005]) to 1.002" (1 + [4 × 0.0005]), and 0.0063% of the outside
diameters generated by the machine will be outside this interval. The width
of this range is 8 × 0.0005 = 0.004".

As the theoretical limits of a normal distribution are  – ∞ and + ∞, which are
not realizable in real-life situations, it does not have a finite interval contain-
ing 100% of the values of the quality characteristic.  It has been the convention
to take the interval from (µ − 3σ) to (µ + 3σ), the width of which is equal to 6σ,
as the benchmark against which to measure the process capability. This is
known as the 6-sigma spread, which indicates the width of this interval. It can
be seen from the table that this interval contains only 99.73% of all possible
values of the characteristic and that 0.27% of the values (in other words, 2700
defective parts out of one million, or 2700 parts per million) fall outside this
interval. The recent trend among many industries is to consider the interval
from (µ – 6σ) to (µ + 6σ) as the measure of the capability of the process. This
interval, the width of which is 12σ, contains 99.9999998% of the values of the
quality characteristic generated by the process. The percentage of values out-
side this interval is 0.0000002, which translates to 0.002 per million (0.002
parts per million, or ppm).

TABLE 4.1

Areas for Different Ranges Under Standard Normal Curve

Range
Covered Within the 

Range (%)
Outside the Range 

(%)
Outside the Range 

(ppm)

(µ − 1 σ) to (µ + 1 σ) 68.26 31.74 317,400
(µ − 2 σ) to (µ + 2 σ) 95.44 4.56 45,600
(µ − 3 σ) to (µ + 3 σ) 99.73 0.27 2700
(µ − 4 σ) to (µ + 4 σ) 99.99366 0.00634 63.4
(µ − 5 σ) to (µ + 5 σ) 99.9999426 0.0000574 0.574
(µ − 6 σ) to (µ + 6 σ) 99.9999998 0.0000002 0.002
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Even if the distribution of the characteristic is normal, the results in the table
are valid only if the exact values of the mean of the distribution µ and the stan-
dard deviation σ are used to compute the limits of the intervals. Exact values
of these parameters can be known only if all the values in the population
(which could be a batch or a lot or all possible values that can be generated by
a process under a set of specified conditions) are known. In the absence of such
100% inspection, which may not be feasible and/or economical, the parameters
are estimated from the results of 100% inspection of a sample batch, which con-
tains a small subset of the values from the population.  The sample mean 
is used to estimate the mean of the distribution µ (known as the population
mean), and either R/d2 (where R is the sample range and d2 is a constant) or
s/c4  (where s is the sample standard deviation and c4 is a constant) is used to
estimate the standard deviation of the distribution σ (known also as the pop-
ulation standard deviation).  The constants d2 and c4 are given for various val-
ues of n in Table A.4 in the Appendix. Out of these,  is an unbiased
estimator of µ with the minimum variance, and even though both R/d2  and
s/c4 are unbiased estimators of σ, the variance of s/c4  is less than that of R/d2.
But, the desirable properties of these estimators—namely, unbiasedness and
minimum variance—cannot minimize the error in estimation unless the sam-
ple batch from which these statistics are computed is truly random.  A sample
batch is said to be random, if every item in the original population has the same
chance of being included in the sample batch. In simple terms, this implies that
the sample batch must truly represent the population it is taken from, espe-
cially its central tendency and variability. 

Selection of random samples for the purpose of estimating the capability of a
running process becomes complicated because of the possibility of changes in
the parameters of the population of the quality characteristic in the time interval
during which the parts are manufactured.  Here, the issues of sample size and
length of the time interval required to collect the observations in the sample
batch are very important. Let us consider the following example.

Example 4.1
It takes 10 seconds for an N.C. lathe to machine the outside diameter of a pin.
Sample batches, each consisting of five pins, were collected every 10 min-
utes.  The diameters of six such batches are given in Table 4.2. As the time
interval between successive sample batches was 10 minutes, these batches

TABLE 4.2

Diameters of Pins in Example 4.1

Sample batch #1 1.000 0.999 0.999 1.000 1.000
Sample batch #2 1.001 1.000 1.000 0.999 1.001
Sample batch #3 1.001 1.001 1.002 1.000 1.000
Sample batch #4 1.002 1.001 1.001 1.002 1.001
Sample batch #5 1.002 1.003 1.002 1.003 1.002
Sample batch #6 1.003 1.002  1.001  1.002  1.002

X

X
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were collected over a period of 50 minutes. The sample statistics of these six
batches are given in Table 4.3.

Let us consider two sets of estimates for the mean µ and the standard devi-
ation σ of the process. One set of estimates is obtained from the grand aver-
ages of the s/c4 and   of the six sample batches given in Table 4.3 and the
other set consists of the s/c4 and   values calculated by considering all 30
observations as one single sample batch.  That is, the second set of estimates
is computed as follows:

As the value of c4 for a sample size of 30 is very close to 1.000, this s value need
not be divided by c4 in order to get an unbiased estimate of σ.  These two sets
of estimates are given in Table 4.4.

As the estimate for µ is the same in the two sets, let us consider the estimates
for σ. The second estimate is almost twice as much as the first estimate. The
question is, which of these estimates truly represents the variability present in
the diameters of the 300 pins? It is obvious that the larger value (0.001329) is
the true estimate of the standard deviation of the 300 diameters, because it
includes the long-term variability present in the diameters, whereas the first
estimate captures only the short-term variability present in the sample batch
of size 5, which is the natural variability inherent in the process. It can be seen

TABLE 4.3

Sample Statistics in Example 4.1

Time Batch # s s/c4

0.0 1 0.000535 0.000569 0.9996
10.0 2 0.000817 0.000869 1.0002
20.0 3 0.000817 0.000869 1.0008
30.0 4 0.000618 0.000657 1.0014
40.0 5 0.000618 0.000657 1.0024
50.0 6 0.000756 0.000804 1.0020

Grand average 0.000738 1.001

TABLE 4.4

Two Sets of Estimates in Example 4.1

Parameter Estimate 1 Estimate 2

µ 1.001 1.001
σ 0.000738 0.001329

x

x
x

x 1.000 0.999 0.999 … 1.001 1.002 1.002+ + + + + +( )
30

----------------------------------------------------------------------------------------------------------------------------------=

1.001 same as the grand average in Table 4.3( )=

s 1.000 1.001–( )2 … 1.002 1.001–( )2+ +
30 1–( )

--------------------------------------------------------------------------------------------------=

0.001329=
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from Table 4.3 that the mean of the population increases during the 50 min-
utes, and the estimate 0.001329 captures this increase in addition to represent-
ing the natural variability of the process present within a batch of size 5.
Process control techniques (discussed in Chapter 8) can be used to detect and
prevent such increases in the mean. Only when the process control tech-
niques confirm that the process is in control should the parameters for com-
puting process capability indexes be estimated.

4.3 Process Capability Indexes and Their Limitations

In this section, we will study some of the capability indexes used in industries.

4.3.1 Process Capability

Process capability is simply the range that contains all possible values of a
specified quality characteristic generated by a process under a given set of
conditions. As we discussed earlier, in the case of a normal distribution, there
is no finite range that contains 100% of the values, hence, the range contain-
ing 99.73% of the values is taken as the benchmark, which is equal to 6 × the
standard deviation. That is,

Process Capability = 6σ     (4.1) 

The recent trend is to take the process capability equal to either 8 × the stan-
dard deviation that contains 99.9937% or 12 × the standard deviation that
contains 99.9999998% of the values. This number can be used in the initial
selection of a machine or a process. It must be noted that the process capabil-
ity of a process depends upon the levels of the process parameters (for exam-
ple, cutting speed, feed, etc. in the case of a CNC lathe), thus the same process
can have more than one process capability value.

The limitation of this index is due to the assumption that the related quality char-
acteristic is normally distributed. The deviation of the shape of the distribution
from normality will affect the range containing a certain percentage of the values.

4.3.2 Process Capability Ratio 

The process capability ratio (PCR, or Cp) compares the tolerance specified on
the characteristic with the process capability defined in Section 4.3.1 and
gives an indication of the proportion or percentage of rejection. For nominal-
the-best type of characteristics,

    (4.2)

where USL and LSL are the upper and lower specification limits of the qual-
ity characteristic, respectively. The quantity in the denominator, 6σ, signifies
the fact that 99.73% of the values generated by the process is contained within

PCR or Cp
USL LSL–( )

6σ
--------------------------------=
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the interval (µ – 3σ, µ + 3σ), assuming normal distribution for the quality
characteristic generated by the process. This implies that if the capability of
the process is such that 99.73% of the values of a quality characteristic falls
within the limits of the tolerance interval, then its PCR is equal to 1. In other
words, the percentage of rejection is equal to 0.27%, or the number of defec-
tives out of 1 million parts is 2700 (2700 ppm), if the PCR is 1 and the mean
of the distribution of the characteristic is equal to the mid-point of the toler-
ance interval, which is the nominal size. This is represented in Figure 4.1.
Similarly, if 99.9999998% of the values falls within the tolerance interval, then
the PCR value is equal to 2.0, because (USL – LSL) = 12σ, assuming normal
distribution. In this case, the percentage rejection is 0.0000002 (0.002 defec-
tives per 1 million parts, or 0.002 ppm). 

It is simple to develop a formula to estimate the percentage of defectives gen-
erated by a process from its PCR value, assuming that the probability distribu-
tion of the quality characteristic is normal. Consider Figure 4.2, in which the
upper and lower limits of the two-sided tolerance interval are marked on the
distribution of the characteristic, denoted by X.  The total proportion of defec-
tives is the sum of the shaded areas under the distribution curve to the left of
the lower specification limit and to the right of the upper specification limit.
Probabilistically, this is equal to:

(4.3)

FIGURE 4.1
Proportion of defectives when Cp = 1.0.

Proportion of
undersize =

0.00135

Proportion of
oversize =
0.00135

X0= µ

Nominal Value

Mean USL = µ + 3σLSL = µ - 3σ

Tolerance Interval (USL – LSL)

3σ3σ

Distribution
of X

p Prob X LSL<[ ] Prob X USL>[ ]+=

P Z LSL µ–
σ

------------------- P Z USL µ–
σ

-------------------->+<=



If the mean of the distribution coincides with the mid-point of the tolerance
interval (which is the nominal size) as per the assumption, then the two
shaded areas are equal and the proportion of defectives, p, can be written as:

    (4.4)

As the mean µ is equal to (LSL + USL)/2, each term on the right-hand side of
the above equation can be rewritten as follows:

(4.5)

FIGURE 4.2
Proportion of defectives.

Proportion of
undersize

Proportion of
oversize

X 0 = µ

Nominal Value

Mean USLLSL

Tolerance Interval

Distribution
of X

p 2 P Z LSL µ–
σ

-------------------<× or 2 P Z USL µ–
σ

-------------------->×=

2 P Z LSL µ–
σ

-------------------<× 2 P Z
LSL LSL USL+( )

2
---------------------------------–

σ
-------------------------------------------<×=

2 P Z LSL USL–
2σ

----------------------------<×=

2 P Z
6– s Cp××

2σ
----------------------------< , as Cp

USL LSL–( )
6σ

--------------------------------=×=

 per Eq. (4.2)
2 P Z 3Cp–<[ ]×=
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Similarly,

(4.6)

Now, combining Eqs. (4.4), (4.5), and (4.6), p can be written as:

 (4.7)

Example 4.3
The specification limits for the inside diameter of a hole are (0.995", 1.005").
The standard deviation of the inside diameters generated by a lathe machine
selected to process this component is estimated to be 0.002". Compute the Cp

index of this process and estimate the proportion of defectives; assume that the
inside diameters generated by the machine follow normal distribution and
that the mean of the distribution is equal to the nominal size, which is 1.000":

The estimate of the proportion of defectives is

The PCR index for quality characteristics with just one limit—either upper
or lower limit—is computed a little differently than the index for quality
characteristics with both upper and lower limits, even though the index con-
veys the same information in both cases. In the case of quality characteristics
with just one limit, the tolerance interval of interest is the distance from the
limit to the mean of the distribution, µ. This distance is equal to (USL – µ) in
the case of characteristics with just the upper limit only (smaller-the-better)
and (µ – LSL) in the case of characteristics with just the lower limit only
(larger-the-better). These distances are compared with one half of the spread

2 Prob Z USL µ–
σ

-------------------->× 2 Prob Z
USL LSL USL+( )

2
----------------------------------–

σ
--------------------------------------------->×=

2 Prob Z USL LSL–( )
2σ

-------------------------------->×=

2 Prob Z 3Cp>[ ]×=

p 2 P Z 3Cp–<[ ] or 2 P Z 3Cp>[ ]××=

Cp
USL LSL–( )

6 σ×
--------------------------------=

1.005 0.995–( )
6 0.002×

-------------------------------------=

0.8333=

p 2 P Z 3Cp>[ ]×=

2 P Z 3 0.8333×>[ ]×=

2 P Z 2.4999>[ ]×=

2 0.0062 (from standard normal tables)×=

0.0122=
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of the characteristics, which is equal to 3σ, as shown in Figures 4.3a and b.
The PCR index is, then,

(4.8)

It can be seen by comparing Eqs. (4.2) and (4.8) that the major difference
between the Cp values for characteristics with either one or two specification

FIGURE 4.3 
(a) Cp index for larger-the-better characteristics; (b) Cp index for smaller-the-better charac-
teristics.

(µ – LSL)

3σ

Proportion of
undersize

µ – 3σ
LSL µ

(USL - µ)

3σ

Proportion of
oversize

µ + 3σ
USLµ

Cp

USL µ–( )
3σ

-------------------------, for smaller-the-better type characteristics 

µ LSL–( )
3σ

------------------------, for larger-the-better type characteristics 





=
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limits is the presence of the mean, µ, in the expression of Cp for characteristics
with one limit. This eliminates the necessity of making any assumption about
the location of the mean, while estimating the proportion of defectives from the
Cp value for the characteristics with just one specification limit. The proportion
of defectives, p, can be estimated as:

(4.9)

The only assumption required in order for the above equation to be valid is
the normality of the distribution of the quality characteristic.

Example 4.4
The roughness of the ground surface of a component cannot exceed 0.02 units.
A random sample of components ground by a surface-grinding machine
yielded the following estimates:

Mean roughness = 0.01.
Standard deviation = 0.003.

Compute the Cp index of this process and estimate the proportion of defec-
tives expected to be generated by the process, assuming that the surface
roughness measurements follow normal distribution.

This is an example of a characteristic with only the upper specification limit
(USL). From Eqs. (4.8) and (4.9),

 

Using the estimates of µ and σ in the above equations, we get:

 

p P X LSL<[ ] or P X USL>[ ]=

P Z LSL µ–
σ

-------------------< or P Z USL µ–
σ

-------------------->=

P Z
3σCp–
σ

----------------< or P Z
3σCp

σ
------------->=

as Cp
µ LSL–

3σ
------------------- or USL µ–

3σ
-------------------- , according to Eq. (4.8)=

P Z 3Cp–<[ ] or P Z 3Cp>[ ]=

Cp
USL µ–

3s
--------------------=

p P Z 3Cp>[ ]=

Cp
0.02 0.01–
3 0.003×

---------------------------=

1.111=

p P Z 3 1.111×>[ ]=

P Z 3.333>[ ]=

0.0004=
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The proportion of defectives estimated above translates to 0.04% defectives,
or 400 defective parts per 1 million ground parts (400 ppm).

Example 4.5
The tensile strength of a welded joint used in construction has to be at least
equal to 40 tons per square inch (ton/in.2). A random sample of 100 joints
welded by a welding machine yielded the following estimates of the param-
eters of the distribution of the tensile strengths:

Mean = 65 ton/in.2.
Standard deviation = 8.2 ton/in.2.

Compute the Cp index and estimate the proportion of defectives generated by
the machine, assuming that the distribution of the tensile strengths is normal.

This is an example of a characteristic with only the lower specification limit
(larger-the-better type of characteristic). From Eqs. (4.8) and (4.9),

 

Replacing µ and σ in the above relations by their estimates results in:

 

The proportion of defectives computed above can also be expressed as 0.12%,
or 1200 defectives per 1 million (1200 ppm), welded joints produced on the
machine.

The limitations of Cp in the case of characteristics with both lower and
upper specification limits are due to the assumptions made while estimating
the proportion of defectives from the index: (1) the distribution of the charac-
teristic is normal, and (2) the mean is equal to the nominal size. The limitation
of Cp in the case of characteristics with just one lower or upper limit is only
due to the assumption that the distribution of the characteristic is normal.
The estimates of the proportion of defectives as per Eqs. (4.7) and (4.9) are not
valid if the distribution of the characteristic is not normal.

Even if the distribution of the characteristic is normal, the Cp index will not
present a true picture regarding the proportion of defectives if the mean is
not equal to the nominal size in the case of characteristics with both lower
and upper limits. This is clearly explained in Figure 4.4, which contains the

Cp
µ LSL–

3σ
-------------------=

p P Z 3Cp–<[ ]=

Cp
65 40–
3 8.2×
------------------=

1.012=

p P Z 3 1.012×–<[ ]=

P Z 3.036–<[ ]=

0.0012=
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distributions of three processes—A, B, and C— which manufacture the same
component with a quality characteristic having lower and upper specifica-
tion limits equal to 4 and 16, respectively. The nominal size is equal to 10. 

All three processes have the same standard deviation, which is equal to 1.5 units,
thus the process capability ratio value for all these processes is equal to: 

The estimate of the proportion of defectives using Eq. (4.7) is 

     

FIGURE 4.4
Cp indexes for processes with different means.

A

C.

B.

USL = 16LSL = 4

σA = 1.5

σC = 1.5

σB = 1.5

µA = 10.0

µC = 14.0

µB = 8.5

Cp
16 4–( )
6 1.5×

------------------- 1.33= =

p 2 Prob× Z 3 1.33×>[ ]=

2 Prob Z 4.00>[ ]×=

2 0.0000317× from Table A.5 in the Appendix( )=

0.0000634 63.4 ppm( )=
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The true proportion of defectives for these processes, however, are as follows:

Process A:

This is the same as the estimate obtained earlier using Eq. (4.7),
because the assumption that the mean is equal to the nominal size
is satisfied in process A. 

Process B: 

Process C:

As can be seen from this example, the deviation of the mean from the nom-
inal size greatly affects the proportion of the number of defectives produced
by the process. This effect is not captured by the Cp index because of the
assumption that the mean is equal to the nominal size when estimating the

Mean µ( ) 10 nominal size( )=

p P X 4<[ ] P X 16>[ ]+=

P Z 4 10–
1.5

---------------< P Z 16 10–
1.5

------------------>+=

P Z 4–<[ ] P Z 4>[ ]=

2 0.0000317 from Table A.5 in the Appendix( )×=

0.0000634 63.4 ppm( )=

Mean µ( ) 8.5=

p P X 4<[ ] P X 16>[ ]+=

P Z 4 8.5–
1.5

----------------< P Z 16 8.5–
1.5

------------------->+=

P Z 3–<[ ] P Z 5>[ ]=

0.001350 0.000000287+=

0.00135029 1350.287 ppm( )=

Mean µ( ) 14=

p P X 4<[ ] P X 16>[ ]+=

P Z 4 14–
1.5

---------------< P Z 16 14–
1.5

------------------>+=

P Z 6.67–<[ ] P Z 1.33>[ ]=

0 0.0918+=

0.0918 91,800 ppm( )=
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proportion of defectives from the index value.  The next index to be discussed
was developed to remedy this problem in the Cp index.

4.3.3 Cpk Index

The Cpk index was introduced to take care of the limitation of the Cp index,
which assumes that the mean of the distribution is equal to the nominal size
while estimating the proportion of defectives in the case of nominal-the-best
type of characteristics.  The reasoning behind the expression used for comput-
ing the Cpk index can best be explained through the example used to illustrate
the limitation of the Cp index in the previous section (Figure 4.4). The propor-
tion of defectives for nominal-the-best type of characteristics depends upon the
distances of the mean of the distribution from both the limits. Hence, for such
a characteristic, an ideal index that indicates process capability and can be used
to estimate the proportion of defectives should contain some information
about both these distances. But, if one is constrained to select only one of these
distances, then the value to choose would be the minimum of the two dis-
tances, because the minimum represents the worst case in terms of the propor-
tion of defectives.  For process C in Figure 4.4, this would be the distance
between the upper limit and the mean (USL – µ), because for process C the
mean is closer to the upper limit than the lower limit. For process B, this dis-
tance would be (µ – LSL), as the mean is closer to the lower limit. This distance
should be divided by some multiple of the process standard deviation, σ, as in
the case of the Cp index. The logical divisor is 3σ, because in this index only part
of the range USL – LSL is considered, as opposed to the entire range of
USL – LSL, as in the case of the Cp index in which the divisor is 6σ. Now, the
expression for the Cpk index can be written as:

 (4.10)

The Cpk index for characteristics with only one specification limit (smaller-
the-better and larger-the-better types of characteristics) is the same as the Cp

index given in Eq. (4.8): 

  (4.11)

Example 4.6
Let us now compute the Cpk index for the three processes represented in Figure 4.4.
The lower and upper specification limits are 4 and 16, respectively; the nominal

Cpk
Minimum µ LSL–( ), USL µ–( )[ ]

3σ
-------------------------------------------------------------------------------------=

Cpk

USL µ–( )
3σ

------------------------- for smaller-the-better type

µ LSL–( )
3σ

------------------------ for larger-the-better type





=
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size is 10.0; and the standard deviation of all three processes, σ, is 1.5. As com-
puted earlier, the Cp indexes for all the processes were equal to 1.33.

Process A: The process mean is µA = 10.0; hence,

   

When the mean is equal to the nominal size, then Cp = Cpk. 
Process B: The process mean is µB = 8.5; hence,

   

When the mean is not equal to the nominal size, then Cp > Cpk.
Process C: The process mean is µC = 14.0; hence,

As in the case of process B, when the mean is not equal to the
nominal size, Cp > Cpk.

It can be seen that the Cpk indexes for these processes are different, because
of the differences in the means, even though the standard deviations are the
same.

Now we will derive an expression for the proportion of defectives, p, in
terms of the Cpk index. As per Eq. (4.3), for nominal-the-best type of charac-
teristics, p is given by:

 

Let us first consider the processes in which the mean is closer to the lower
specification limit (LSL), as in the case of process B in Figure 4.4.  Here, the
Cpk index is

Cpk
Min 10 4–( ), 16 10–( )[ ]

3 1.5×
-------------------------------------------------------------=

1.333=

Cpk
Min 8.5 4–( ), 16 8.5–( )[ ]

3 1.5×
----------------------------------------------------------------=

1.0=

Cpk
Min 14 4–( ), 16 14–( )[ ]

3 1.5×
-------------------------------------------------------------=

0.444=

p Prob X LSL<[ ] Prob X USL>[ ]+=

Prob Z LSL µ–
σ

-------------------< Prob Z USL µ–
σ

-------------------->+=

Cpk
µ LSL–( )

3σ
------------------------=
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which contains information regarding the distance between the lower specifi-
cation limit and the mean only which affects the proportion of the defectives to
the left of the lower specification limit. It contains no information about the dis-
tance between the upper specification limit and the mean which affects the pro-
portion of defectives to the right of the upper specification limit. It is impossible,
then, to derive an expression that exactly estimates the total proportion of defec-
tives that consists of the proportion of defectives to the left of LSL as well as the
proportion of defectives to the right of USL. The best approach, then, is to derive
an expression that gives an upper bound for the total proportion of defectives.
As the proportion of defectives to the left of LSL is larger than the proportion of
defectives to the right of USL when the mean is closer to LSL, a logical upper
bound for the total proportion of defectives is two times the proportion of defec-
tives to the left of LSL. That is,

when LSL is closer to the mean, and when:

  (4.12)

The processes for which the mean is closer to the upper specification limit (USL)
can be handled in a similar manner.  Let us consider process C in Figure 4.4.  The
Cpk index for such processes is

which can be related only to the proportion of defectives to the right of USL.
As in the earlier case of B with the mean closer to LSL, the best approach here
also is to derive an expression for the upper bound for the total proportion of
defectives. Here, the proportion of defectives to the right of USL is larger than
the proportion of defectives to the left of LSL, thus a valid upper bound for
the total proportion of defectives is given by:

when:

  (4.13)

p 2P Z LSL µ–
σ

-------------------<≤

Cpk
1
3
--- µ LSL–( )

σ
------------------------=

p 2P Z 3Cpk–<[ ]≤

Cpk
USL m–( )

3σ
-------------------------=

p 2P Z USL µ–
σ

-------------------->≤

Cpk
1
3
--- USL µ–( )

σ
-------------------------=

p 2P Z 3Cpk>[ ]≤
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which is the same as Eq. (4.12).  Therefore, the general formula for the total
proportion of defectives is

  (4.14)

The only assumption required in order for Eq. (4.14) to be valid is the normal-
ity of the distribution of the characteristic.

Example 4.7
Let us now estimate the proportion of defectives for processes A, B, and C in
Figure 4.4 using the respective Cpk values and compare these estimates with
the true proportion of defectives computed earlier using the means and stan-
dard deviations of these processes.

Process A: The Cpk index was earlier calculated in Example 4.6 as 1.333.

This is the same as the estimate obtained from the Cp index and the
true value obtained earlier using the mean and the standard devia-
tion. When the mean is equal to the nominal value, the Cpk and Cp

indexes are equal and the estimates of the proportion of defectives
obtained from these indexes will be equal to the true value. (The
upper bound on the total proportion of defectives computed using
the Cpk index is the same as the exact value.)   

Process B: The Cpk index from Example 4.6 is 1.00.

The exact total proportion of defectives estimated earlier using the
mean and standard deviation was 0.00135 (1350 ppm). The upper
bound obtained using the Cpk index is twice as much as the exact
value.

Process C:  The Cpk index from Example 4.6 is 0.444.

p 2P Z 3Cpk>[ ]≤ 2P Z 3Cpk–<[ ]=

p 2P Z 3 1.33×>[ ]≤ 2P Z 4.0>[ ]=

2 0.0000317 from Table A.5 in Appendix( )×=

0.0000634 63.4 ppm( )=

p 2P Z 3 1.00×>[ ]≤ 2P Z 3.0>[ ]=

2 0.00135× 0.0027 2700 ppm( )= =

p 2P Z 3 0.444×>[ ]≤ 2P Z 1.332>[ ]=

2 0.0918× 0.1836 183,600 ppm( )= =
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The exact total proportion of defectives estimated earlier using the
mean and standard deviation was 0.0918 (91,800 ppm). The upper
bound obtained using the Cpk index is twice as much as the exact value.  

It can be seen from this example that the upper bound estimated from the Cpk

index overestimates the total proportion of defectives when the mean is not
equal to the nominal size.  As the Cp and Cpk indexes are the same for character-
istics with one specification limit (smaller-the-better and larger-the-better), the
proportion of defectives for these are computed in the same manner as using
the Cp index (Eq. (4.9)). That is,

  (4.15)

Estimates of the total percentage of defectives (and parts per million) for
nominal-the-best, smaller-the-better, and larger-the-better types of character-
istics from the Cp and Cpk indexes are given in Tables 4.5 and 4.6.  For example,
when the Cp index for a nominal-the-best type of characteristic is 0.90, the
exact estimate of the total percentage of defectives is 0.7000 (7000 ppm) as per
Table 4.5. Of course, this requires the assumption that the mean is equal to the
nominal size in addition to the normality of the distribution.  If the Cpk index
is 0.90, then the upper bound of the total percentage of defectives is also
0.7000 (7000 ppm), assuming only that the distribution is normal. Consider
now a characteristic with one specification limit (upper or lower) and a Cp

index of 1.1.  As per earlier discussion, this is also equal to the Cpk index.  Then
the estimate of the percentage of defectives is 0.04835 (483.5 ppm), as per
Table 4.6.

The main limitation of the Cpk index is due to the normality assumption of
the characteristics.  Also, for the nominal-the-better type of characteristics, the
Cpk index yields only an upper bound for the total proportion of defectives.

 TABLE 4.5

Percentage Defectives for Different Cp and Cpk Values 
for Nominal-the-Best Characteristicsa

Upper Bound/Exact
    %Defective ppm

0.50 13.3600 133,600
0.70 3.5800 35,800
0.90 0.7000 7,000
1.00 0.2700 2,700
1.1 0.0967 967
1.2 0.03182 318.2
1.3 0.00962 96.2
1.333 0.00634 63.4
1.4 0.00267 26.7
1.5 0.00068 6.8
1.6667 0.0000574 0.574
2.0 0.0000002 0.002
a These results are only true if the distribution of X is normal.

p P Z 3Cpk–<[ ] or P Z 3Cpk>[ ]=

Cpk/Cp
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As seen in Example 4.7, this could overestimate the true proportion of defec-
tives greatly. In addition to these two obvious problems associated with the
Cpk index, there is another flaw inherent in this index. This is best illustrated
in Figure 4.5, which contains the distributions of a quality characteristic gener-
ated by two processes, A and B. The lower and upper specification limits are
0.95" and 1.05", respectively, thus the nominal value is 1.00". The distributions
of the characteristic generated by both the processes are normal. The distribu-
tion of process A has a mean of 0.98" and a standard deviation of 0.012",
whereas the distribution of process B has a mean of 1.00" (which is equal to the

TABLE 4.6

Percentage Defectives for Different Values of Cp and Cpk  for 
Smaller-the-Better and Larger-the-Better Characteristicsa

Cp = Cpk % Defective ppm

0.5 6.6800 66,800
0.7 1.790 17,900
0.9 0.350 3,500
1.0 0.1350 1,350
1.1 0.04835 483.5
1.2 0.01591 159.1
1.3 0.00481 48.1
1.3333 0.00317 31.7
1.4 0.001335 13.35
1.5 0.00034 3.4
1.6667 0.0000287 0.287
2.0 0.0000001 0.001
a  These results are only true if the distribution of X is normal.

FIGURE 4.5
Processes with the same Cpk but different Cpm indexes.

0.98 µB = 1.000

LSL = 0.950 USL = 1.050

σB = 0.02

σA = 0.012

A

B
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nominal size) and a standard deviation of 0.02". The Cp and Cpk indexes of these
processes are as follows:

Process A:

Process B:

Process A has a smaller standard deviation compared to process B so it has
a larger Cp index than process B, but this advantage of process A is compen-
sated by a larger difference between the mean and the nominal value com-
pared to process B, yielding the same Cpk index for both the processes. The Cpk

index was introduced to take into consideration the location of the mean of
the distribution. In this example, though, we see that even though the mean of
process A is not equal to the target value (nominal value) and the mean of pro-
cess B is equal to the target value, both have the same Cpk index. This is because
the standard deviation of process A is less than that of process B; since the stan-
dard deviation appears in the denominator of Cpk , it compensates for the devi-
ation of the mean from the target value that appears in the numerator. It is
better to have an index that eliminates this problem by having both the stan-
dard deviation (or variance) and the deviation of the mean from the target
value on the same side of the expression. The next index to be discussed satis-
fies this requirement.

4.3.4 Cpm Index  

The Cpm index was developed by Chan et al. In this index for nominal-the-best
characteristics, the numerator is the same as that of the Cp index, which is the
range of the tolerance interval (USL – LSL). The denominator is a combined
measure of the standard deviation and the deviation of the mean from the
target value. The Cpm index is computed as:

(4.16)

Cp
1.05 0.95–( )
6 0.012×

------------------------------- 1.389= =

Cpk
Minimum 0.98 0.95–( ), 1.05 0.98–( )[ ]

3 0.012×
--------------------------------------------------------------------------------------------------- 0.833= =

Cp
1.05 0.95–( )

6 0.02×
------------------------------- 0.833= =

Cpk
Minimum 1.00 0.95–( ), 1.05 1.00–( )[ ]

3 0.02×
--------------------------------------------------------------------------------------------------- 0.833= =

Cpm
USL LSL–

6 σ2 µ X0–( )2+
------------------------------------------=
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where σ 2 is the variance of the process, µ is the mean, and X0 is the target
value. It can be seen that the expression σ 2 + (µ – X0)

2 in the denominator of
Eq. (4.16) is the mean-squared deviation related to Taguchi’s loss function
discussed in Chapter 3.

Example 4.8
Compute the Cpm index for processes A and B in Figure 4.5.

LSL = 0.95"
USL = 1.05"
T = 1.00"
µA = 0.98" 
σA = 0.012" 
µB = 1.00" 
σB = 0.02"
Process A: 

Process B: 

The Cpm index for process A is smaller than that of process B because of the
larger deviation of the mean of process A from the target value. Also, the Cpm

for process B is the same as its Cpk value, because its mean is equal to its target
value.

The main problem with the Cpm index is that it cannot be used to estimate
the proportion of defectives. This is because it cannot be related to the prob-
ability expression for the proportion of defectives, assuming that the charac-
teristic is normally distributed, unlike the Cp and Cpk indexes. Also, it gives
the same weight to the variance and the square of the deviation of the mean
from the target value in the denominator.  For example, the Cpm index for pro-
cess A in Example 4.8 was less than that of process B. In some real-life appli-
cations, process A could be better than that of process B. 

4.3.5 Ppk Index

We may recall that, in Section 4.2, wrong estimation of the mean and standard
deviation was shown as one source of error in measuring the process capability.

Cpm
1.05 0.95–

6 0.0122 0.98 1.00–( )2+
---------------------------------------------------------------=

0.712=

Cpm
1.015 0.95–

6 0.0202 1.00 1.00–( )2+
---------------------------------------------------------------=

0.833=
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Example 4.1 contained 30 observations collected over a period of 50 minutes.
These observations were collected in six sample batches of size 5 each. The
time interval between successive batches was 10 minutes. The following esti-
mates of the process standard deviation were obtained:

1. Average value of the standard deviations of the six sample batches =
0.000738.

2. Standard deviation of the entire 30 observations taken as one sam-
ple batch = 0.001329.

It was pointed out that the estimate given by 0.000738 contains the variation
within each sample batch of size 5 (short-term variability) only, whereas the
estimate of 0.001329 contains the variation within the batches as well as the
long-term variation in the process over a period of 50 minutes.  Assuming that
the process was not stopped and adjusted during the interval of 50 minutes
(that is, the process control technique used to monitor the process allowed the
observed deviation in the mean), the true estimate of the total variability in
the characteristic is 0.001329.  Usually the estimate of the variation within
each batch (of size 5, in this example) is used in computing the Cp and Cpk

indexes. As this estimate is smaller than the estimate of the total variation
including the long-term variability, these indexes overestimate the process
capability and hence underestimate the proportion of defectives. In order to
address this problem, the Ppk index was introduced.

The Ppk index is calculated using the same formulas for computing the Cpk

index. For nominal-the-better type of characteristics: 

(4.17)

For smaller-the-better and larger-the-better types of characteristics, the Ppk

index is computed as:

(4.18)

In the above formulas, σ is estimated by the total long-term standard devia-
tion. The proportion of defectives is estimated in the same manner as using
the Cpk index. These formulas are

  (4.19)

for nominal-the-best type of characteristics and

  (4.20)

Ppk
Minimum µ LSL–( ), USL µ–( )[ ]

3σ
--------------------------------------------------------------------------------------=

Ppk
USL µ–( )

3σ
-------------------------, for S-type characteristics=

µ LSL–( )
3σ

------------------------, for L-type characteristics=

p 2P Z 3Ppk>[ ]≤ 2P Z 3Ppk–<[ ]=

p P Z 3Ppk–<[ ] or P Z 3Ppk>[ ]=
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for smaller-the-better and larger-the-better types of characteristics. As in the
case of the Cpk index, the distribution of the characteristic must be normal in
order for Eqs. (4.19) and (4.20) to be valid.

Example 4.9
Compute the Ppk index for the data given in Example 4.1 and estimate the pro-
portion of defectives using the Ppk index. Compare these values with the Cpk

index and the associated estimate of the proportion of defectives. Assume
that LSL = 0.995" and USL = 1.005" (see Table 4.4). Estimate 1 in Table 4.4 was
obtained by averaging the individual batch estimates; the entire 30 observa-
tions considered as one batch yielded Estimate 2.

The Cpk index for this problem will be calculated using 0.000738 as the esti-
mate of σ in the above formula as follows:

It can be seen that 2700 ppm is closer to the true proportion of defectives (in
ppm) rather than the 0.0282 ppm estimated from the Cpk index. 

The limitations of the Ppk index are the same as those of the Cpk index dis-
cussed earlier.  In short, these are the normality assumption required for the
expressions to be valid, the upper bound on the proportion of defectives, and
the masking of the deviation of the mean from the target value by the stan-
dard deviation.

4.3.6 Pp Index

The Pp index is the same as the Cp index except that it uses the estimate of the
long-term standard deviation instead of the estimate of the short-term stan-
dard deviation. For a nominal-the-best type of characteristics, this is 

(4.20)

Ppk Minimum 1.001 0.995–( ), 1.005 1.001–( )
3 0.001329×

-------------------------------------------------------------------------------
 
 
 

=

1.003=

p 2 P Z 3 1.003×>[ ]×≤
0.0027 2700 ppm( )=

Cpk Minimum 1.001 0.995–( ), 1.005 1.001–( )
3 0.000738×

-------------------------------------------------------------------------------
 
 
 

=

1.81=

p 2 P Z 3 1.81×–<[ ]×≤
0.0282 ppm from Table A.5 in Appendix( )=

Pp
USL LSL–( )

6σ
--------------------------------=
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For smaller-the-better and larger-the-better types of characteristics, the Pp

index is computed as:

(4.21)

In the above formulas, σ is estimated by the total long-term standard devia-
tion. The proportion of defectives is estimated in the same manner as using
the Cp index: 

  (4.22)

for the nominal-the-best type characteristics and

  (4.23)

for smaller-the-better and larger-the-better types of characteristics. As in the
case of the Cp index, the distribution of the characteristic must be normal and
the mean must be equal to the nominal size in order for Eqs. (4.22) and (4.23)
to be valid.

The limitations of the Pp index are the same as those of the Cp index dis-
cussed earlier.  In short, these are the normality assumption required for the
expressions to be valid and the assumption that the mean is equal to the nom-
inal size in estimating the proportion of defectives. The Pp and Ppk indexes
measure the performance of the process, whereas the Cp and Cpk indexes mea-
sure the capability of the process. For nominal-the-best type of characteris-
tics, the Cp and Pp indexes indicate only the potential capability and
performance of the process, respectively, because they do not include the pro-
cess mean. The Cpk and Ppk indexes indicate the actual capability and perfor-
mance of the process, respectively, because they include not only the
standard deviation but also the mean.

4.4 Steps for Estimating Process Capability Indexes

This section gives the steps that must be taken to estimate the process capa-
bility of a process using one or more of the indexes discussed in the previous
section. It should be noted that the major tasks in estimating the process capa-
bility are estimating properly the mean and the standard deviation of the dis-
tribution of the quality characteristic generated by the process and

Pp
USL m–( )

3σ
-------------------------, for S-type characteristics =

m LSL–( )
3σ

------------------------, for L-type characteristics =

p 2P Z 3Pp>[ ]=

p P Z 3Pp–<[ ] or P Z 3Pp>[ ]=
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conducting appropriate statistical tests to ensure that the distribution of the
quality characteristic is normal.  The user should be aware of the sources of
error and take steps to eliminate these sources as much as possible.

Step 1: Collect data. The user should collect a large amount of data
randomly from the process, making certain that the process stays
in “statistical control” during the entire period. Process control
charts (to be discussed in Chapter 8) must be used to ensure that
the process remains in control during the data-collection period. It
is important to seek the customer’s approval for the number of
observations collected to estimate the process capability indexes.

Step 2: Analyze data. This step is necessary to check whether the as-
sumptions required for the expressions to be valid are satisfied.
This includes checking for normality and presence of outliers using
statistical techniques.

Step 3: Calculate process capability indexes. The process mean, µ, and the
standard deviation, σ, are estimated by the appropriate sample
statistics, as discussed in Section 4.2. Customers should be in-
formed of the sample statistics and the method used to calculate
these statistics. The customer must also agree with the specification
limits used in the calculation. While using the process capability
indexes, it should be kept in mind that no single index value
presents the complete picture and that an understanding of a pro-
cess cannot be reduced to just one number. Use of the indexes must
be coupled with knowledge of the technical nature of the product
and processes. Also, it is important to realize that all calculated
index values are estimates of the true index values because they
are functions of the sample statistics, which themselves are esti-
mates of the true values of the process mean and standard devia-
tion. The variation in the estimates of the indexes can be reduced
by taking appropriate steps while estimating the process parame-
ters, as explained earlier in this chapter.

4.5 Estimators of Process Capability Indexes

In this section, we will study the estimation of the process capability indexes.
These indexes have to be estimated because the parameters of the probability
distribution of the quality characteristic required for the computation of these
indexes have to be estimated.  We will restrict our discussion to the nominal-
the-best type of quality characteristic. The extensions to smaller-the-better
and larger-the-better types of characteristics are straightforward.
©2001 CRC Press LLC



4.5.1 Process Capability Ratio 

In this expression, only the standard deviation, σ, needs to be estimated. As
we saw earlier, the unbiased estimate of the standard deviation σ  is  s/c4,
where s is the sample standard deviation and c4 is a constant obtained from
Table  A.4 in the Appendix. Hence, the estimate of PCR is

(4.24)

The other estimate of σ is R/d2, which can be used for smaller sample sizes
(≤6). The values of d2 can be obtained from Table A.4 in the Appendix.

If the sample size (n) is large (>30), then c4 is close to one, thus the unbiased
estimate of σ can be taken as s.

4.5.2 Cpk Index

In this expression, both µ and σ are to be estimated. Because the unbiased
estimators of these parameters are   and s/c4, respectively, the estimate of Cpk

is

  (4.25)

In Eq. (4.25), s/c4 can be replaced by R/d2 for smaller sample sizes (≤6).

4.5.3 Cpm Index

For nominal-the-best type of characteristics,

PCR USL LSL–
6σ

----------------------------=

PCRˆ Ĉp
USL LSL–

6 s
c4
----

----------------------------= =

Cpk
Minimum µ LSL–( ), USL µ–( )[ ]

3σ
--------------------------------------------------------------------------------------=

x

Ĉpk Min x LSL–( )
3 s

c4
----

------------------------, USL x–( )
3 s

c4
----

-------------------------=

Cpm
USL LSL–( )

6σ ′
--------------------------------=
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where

where X0 is the target value for the mean. In the paper by Chan et al.,1 the esti-
mate of  is given as:

  (4.26)

In order to illustrate the randomness of these estimators, 100 sample
batches of size 10 each were simulated from a normal distribution with a
known mean, µ = 45.0, and standard deviation, σ = 2.5. The lower and upper
specification limits (LSL and USL) were assumed to be 22.5 and 52.5, respec-
tively, and the target value (nominal size) is X0 = 37.5.  

Figure 4.6 is the histogram of the 100 estimates of the Cp values obtained from
100 sample batches of size 10 each, simulated from the normal distribution
with a mean equal to 45.0 and a standard deviation equal to 4.5. The estimates
were computed using the following formula:

The range of these estimates is (1.2264, 4.9374) and the average of these 100
values is 2.16. The true value computed using the true values of the parame-
ters is 1.00.

FIGURE 4.6
Histogram of Cp estimates.

σ ′ σ2 µ X0–( )2+=

σ ′

σ̂ ′
Σi 1=

n Xi X0–( )2

n 1–( )
------------------------------------=

Ĉp
USL LSL–( )

6 s
c4
----( )

--------------------------------=
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Figure 4.7 is the histogram of the 100 estimates of the Cpk index calculated
using the following formula:

The range of these estimates is (0.6132, 2.4687) and the average value is 1.081.
The true value is 1.00.

Figure 4.8 is the histogram of the 100 estimates of the Cpm index whose true
value is 0.63.  The range of the estimates is (0.4585, 0.8450) and the average
value is 0.604. The estimates were computed using the following formula:

FIGURE 4.7
Histogram of Cpk estimates.

FIGURE 4.8
Histogram of Cpm estimates.

Ĉpk
Min x LSL–( ), USL x–( )[ ]

3 s
c4
----( )

---------------------------------------------------------------------=

Ĉpm
USL LSL–( )

Σ Xi X0–( )2

n 1–( )------------------

--------------------------------=
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4.6 Probability Distributions of the Estimates of Process 
Capability Indexes

The results given in this section assume that the quality characteristic, X, is
normally distributed and that the observations in the sample batch are inde-
pendent. Kotz and Johnson6 and Kotz and Lovelace7 present excellent treat-
ments of the process capability indexes and their estimates.

4.6.1 CP Index

As per Kotz and Johnson,6 the following probability statement can be made
about  (given in Eq. (4.24)):

  (4.27)

in which c is a constant,  is the chi-square random variable with (n – 1)
degrees of freedom (n is the sample size), and Cp is the true value of the Cp

index. 
The 100(1– )% confidence interval for the true value Cp is obtained from:

(4.28)

where  is the value of the square root of the chi-square random variable
with (n – 1) degrees of freedom (n is the sample size) such that the area under
the distribution to its right is “α.” Chi-square values for selected values of
degrees of freedom (ν) and areas to the right (α) are given in Table A.6 in the
Appendix. Kotz and Johnson6 suggest the following approximations, if chi-
square tables are not available:

  (4.29) 

as suggested by Fisher, and

(4.30)

as suggested by Wilson and Hilferty, where v is the degrees of freedom, “a”
is the area to its right, and Ζa is the value of the standard normal variable such
that the area to its right is “a.”

Ĉp

P Ĉp c Cp×>[ ] P cn−1
2 n 1–( )

c2
-----------------<=

cn−1
2

a

P
cn−1,1−a/2

n 1–
----------------------Ĉp Cp

χn−1,α 2⁄

n 1–
------------------Ĉp< < 1 α–=

χn 1– ,α

χv ,a v 0.5–( )
Za

2
-------+≈

χv ,a v
1
2
---

1 2
9v
------– Za

2
9v
------ 

 
1
2
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+
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2
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Example 4.10
A manufacturer requires that the supplier of a  certain component maintain
a Cp index of at least 1.50. The supplier uses a sample size of 20. What is the
probability that an estimate of the Cp index  obtained by the supplier will
be at least 1.50?

From Eq. (4.27):

 

This means that the supplier could get a  value less than 1.50 about 46.7%
(100 – 53.3) of the time.

Example 4.11
The estimate of the Cp index obtained from a sample of size 15 is 1.20. Con-
struct a 95% confidence interval for the true value of the Cp index.

In this problem,  = 0.05 (5.0%), ( /2 = 0.025), n = 15 (degrees of freedom = 14),
Ζ0.025 = 1.96, and Z0.975 = –1.96. From Eq. (4.29),

From Eq. (4.28), the lower limit of the confidence interval is 

 

and the upper limit is 

 

4.6.2 Cpk Index

Kotz and Johnson6 reported the following probability statement about  
the estimate of Cpk given in Eq. (4.25):

       (4.31)
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P Ĉp 1.50>[ ] P χ19
2 19<[ ] , c 1 and n 20= =( )=

0.533=

Ĉp
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where χ1 and χn–1 are  the square roots of the chi-square random variables
with 1 and (n – 1) degrees of freedom (n is the sample size), respectively. It is
very difficult to use Eq. (4.31) to make any probability statement about ,
because of the presence of χ1 and χn–1 on the right-hand side. As n → ∞, the
distribution of   becomes approximately equal to the distribution of . 

The 100(  – α)% confidence interval for Cpk is
5,6 

  (4.32)

where: 

(4.33)

where  is the value of the standard normal random variable such that
the area under its density function to its right is .

Example 4.12
The estimate of Cpk obtained from a sample of size 15 is 1.2. Construct a 95%
confidence interval for the true Cpk index.

Here, n = 15,   = 1.2  = 0.05 and  = Z0.025 = +1.96. As per Eq. (4.33), 

 

The lower limit of the 95% confidence interval per Eq. (4.32) is 

1.2 − 0.6021 = 0.5979

and the upper limit is

1.2 + 0.6021 = 1.8021

4.6.3 Cpm Index 

In the paper by Chan et al.,1 the probability density function of Cpm is derived.
They obtained the following approximate conditional probability expression
for Cpm using Bayes’ theory.  In the following expression, w is a given value:

(4.34) 

where n is the sample size and Z is the standard normal variable.
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Ĉpk α. Zα. 2⁄

E 1.96 15 1–( )
9 15 15 3–( )××
-----------------------------------------

1.22

2 15 3–( )×
----------------------------- 1

6
15 1–( )

-------------------+ 
 +

 
 
 

1 2⁄

0.6021= =
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Example 4.13
Let the LSL and USL be 0.95 and 1.05, respectively. The target value is 1.00. A
sample of size 20 yielded a sample mean equal to 0.99 and a  σ ′ equal to 0.015.
Find the probability that the true value of the Cpm index is greater than 1.00.

4.7 Process Capability Indexes for Non-Normal Populations

The formulas used for computing all the process capability indexes assume
that the distribution of the quality characteristic, X, is normally distributed.
For example, the range 6σ or 3σ  in Cp and Cpk assumes a certain percentage
coverage of the characteristics under the normal curve (6σ range covers
99.73%). This assumption of normality is important because the calculation
of the proportion of defectives (or ppm) from the capability indexes is valid
only if the assumption is satisfied.  English and Taylor3 studied the robust-
ness of the process capability indexes when the distribution of the character-
istics is not normal.  Somerville and Montgomery11 give an excellent
discussion of the error due to non-normality in the estimation of parts per
million as the result of using equations based on the normality assumption.
They recommend transformation of data (e.g., square root transformation) to
convert the non-normal data to normal. It is a trial-and-error approach. After
each transformation, the transformed data must be tested for normality using
an appropriate statistical test. Only when the tests indicate that the trans-
formed data are close to normal, can the formulas of the capability indexes be
used. The problem with this approach is that the transformed data may not
have any physical meaning and the users may not feel comfortable with the
transformed data.

Many researchers have suggested using modified formulas to compute the
process capability indexes after either fitting the data to the Pearson family
or Johnson family of distributions, or any other appropriate distribution, and
then using modified formulas.2,4,9,10 Clements2 suggested the following mod-
ifications for Pearson family of distributions.

Ĉpm
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Find X0.00135  (0.135 percentile), X0.50  (50 percentile), and X0.99865 (99.865 per-
centile) and compute  and  as follows for nominal-the-best type of
characteristics:

  (4.35)

It can be seen that (X0.99865 – X0.00135) replaces 6σ for normally distributed char-
acteristics. Both the ranges cover the middle 99.73% of the characteristics:

   (4.36)

In Eq. (4.36), X0.50 replaces µ for a normal distribution. The ranges (X0.99865 –
X0.50) and (X0.50 – X0.00135) are the intervals to the right and left of X0.50, respec-
tively, covering one half of 99.73% of the characteristic. Recently, McCormack
et al.8 recommended the following nonparametric indexes, based on empiri-
cal distributions.

Find X0.005 (0.5  percentile), X0.50  (50  percentile), and X0.995 (99.5 percentile)
and compute the following indexes:

  (4.37)

and

(4.38)

It can be seen that the middle 99.0% coverage (instead of the conventional
99.73%) is considered in  and the left and right 49.5% coverages are con-
sidered in the  index. These indexes are the result of the findings that in
sample batches of 100 or more observations, the empirical cumulative distri-
bution function is not very much different from the other methods, in terms
of bias of extreme percentiles.

The user must be aware of the assumptions and limitations of the empirical
formulas suggested by various researchers before using them. 
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4.9 Problems

1. The specification limits for a nominal-the-best type of characteristic
are set at 95 ± 10. The distribution of the characteristic is found to
be approximately normal with a mean equal to 100.00 and a stan-
dard deviation equal to 3.00.
a. Compute the Cp and Cpk indexes and the proportion of defectives

using Cp and Cpk indexes. Compare these estimates of the pro-
portion of defectives with the true proportion computed using
a normal distribution.   

b. How much would the proportion of defectives be reduced if the
mean is reduced to 95.00?

2. Consider the two processes shown below:

Specification limits for the characteristic are set at 100 ± 3.5. Com-
pute the Cp and Cpk indexes of these processes. Which process
would you use? Why?

3. The tensile strength of a component has to be at least 50 ton/in.2.
Sample observations yield a mean of 70 tons and an estimate of
standard deviation of 7.5 tons. Estimate the Cp and Cpk indexes and

Process A Process B 

Mean 100.00        105.00
Standard deviation 3.00        1.00
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the proportion of defectives from these values assuming a normal
distribution. Compare these estimates with the estimate of the true
proportion computed from a normal distribution. 

4. The surface roughness of a component cannot exceed 1.01 micro-
inches. The mean and standard deviation of the surface roughness
are estimated to be 0.2 and 0.25, respectively. Estimate the Cp and
Cpk indexes and the proportion of defectives using these values.
Compare these estimates with the estimate of the true proportion
of defectives computed from a normal distribution. 

5. The following observations represent the diameters of shafts machined
on a lathe: 

1.01 1.02 0.99 1.00 1.02 1.03 1.04 0.98 1.01 0.99

The specification limits are 1 ± 0.02. Estimate the Cp and Cpk indexes
and the proportion of defectives using the Cp and Cpk indexes. 

6. It takes about 2 minutes for an N.C. lathe to machine the outside
diameters of four pins. Sample batches, each consisting of four pins,
were collected every 10 minutes. The diameters of five such sample
batches are given below:

Estimate the Cpk and Ppk indexes using these observations and esti-
mate the proportion of defectives from these indexes. The specifi-
cation limits are 2.02 ± 0.03.

7. The Cpk index of a particular batch of components is 0.9, and the
Cp index is 1.2. Assume that the characteristic is nominal-the-best
type and that it is normally distributed.  
a. Estimate the true proportion of defectives.  
b. If the specification are set at 6 ± 0.36, what are the possible values

of the mean of the distribution?
8. The estimate of the Cp index obtained from a sample batch of size

20 is 1.3. Construct a 95% confidence interval for the true Cp index.
9. The estimate of the Cpk index obtained from a sample batch of size

25 is 1.5. Construct a 90% confidence interval for the true Cpk index.  
10. The estimate of the Cpm index obtained from a sample batch of size

25 is 1.2. Find the probability that the true value of the Cpm index
is greater than 1.2. 

Batch #1 2.01 1.99 2.00 2.00
Batch #2 2.03 2.02 2.02 2.01
Batch #3 2.03 2.04 2.04 2.03
Batch #4 2.04 2.04 2.05 2.03
Batch #5 2.05 2.04 2.06 2.06
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5
Measurement Error
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5.7 Problems

5.1 Introduction

Every measurement system has some error associated with it. The measurement
error has two components—random or systematic. The random component
causes a spread in the results of measurement, whereas the systematic compo-
nent causes a bias in the results. The extent of bias in the measurement system
is indicated by its accuracy, and the amount of variability in the measurement
system is reflected in its precision. The true value of any quality characteristic is
not equal to its observed value because of measurement error. There are two
sources of measurement error—namely, operators and gauges. Both these
sources affect both the accuracy and precision of the measurement system. Esti-
mation of the parameters of the measurement system error is critical, because
these errors affect the decisions made in process capability studies (Chapter 4),
process setting (Chapter 7), process control (Chapter 8), and inspection. 

5.2 Modeling the Effect of Measurement Error

Let the true value of the quality characteristic measured be X. The mean and
the variance of X depend upon the process that generates X. Let these param-
eters be µx and  respectively. Let the observed value of the characteristic be
Y, which is different from X because of the error of the measurement system.

σx
2,
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Let the measurement error be V and its mean and variance be µv and 
respectively. It is assumed that the true value X and the measurement error V
are independent of each other. This assumption might be true in most real-life
applications. The relationship among X, Y, and V is

Y = X + V  (5.1)

Then the mean of Y is

µy = µx + µv (5.2)

and its variance is

(5.3) 

because X and V are assumed to be independent. The variance of Y  is also
called the total variance, and the variance of X  is known as the part-to-part
variance or the product variance. The mean of V, µv, affects the fixed component
and causes a bias in the measurements. If µv can be estimated, then the bias
can be eliminated by making suitable adjustment to the observed values such
that µv = 0. This can also be achieved by calibration of the measuring instru-
ments, as mandated by ISO 9000 requirements. In our analysis from now on,
µv is assumed to be 0. Then, µy = µx as per Eq. (5.2).

The variance of V,  has two components—one because of operator error
and the other due to gauge error. Let the variances due to operator and gauge
errors be  and  respectively. Then,

(5.4)

assuming that these error components are independent. The variance  is
called the variance of operator reproducibility and the variance  is called the
variance of gauge repeatability. It can be seen from Eqs. (5.3) and (5.4) that reduc-
tion of  and  will reduce  which in turn will bring  closer to 
thereby reducing the effect of measurement error on the decisions made. The
variance  can be reduced by training of the operators, repeated inspec-
tions, and automation, whereas the variance  can be reduced by proper
maintenance of gauges, repeated inspections, and investment in gauges with
higher precision. The estimation of  and  is done through Gauge Repeat-
ability and Reproducibility studies,2 described in Section 5.3.

The random variables X (true value of the quality characteristic) and V (mea-
surement error) are assumed to be normally distributed. This assumption is
true in most real-life applications. Then, the observed value is also normally
distributed because of Eq. (5.1). Let the probability density functions of X, V,
and Y be f(x), f(v), and f(y), respectively. Let us also assume that X is a nominal-
the-best type quality characteristic with LSL and USL as the lower and upper
specification limits, respectively. This means that any component/product
with a quality characteristic value within the range (LSL, USL) is accepted
and any component with a characteristic value outside this range is
rejected. Because of the measurement error, the decision to accept or reject
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a component/product is made based on the location of the observed value, Y,
relative to the acceptance and rejection regions and is not based on the loca-
tion of the true value, X. As a result, there are two types of possible wrong
decisions: (1) rejecting a component/product with a true value of the charac-
teristic falling within the acceptance region (which is a good unit), and (2) accept-
ing a component/product with a true value of the characteristic falling outside
the acceptance region (which is a defective unit). These two cases are illus-
trated in Figures 5.1 and 5.2.

Let us consider Figure 5.1, in which the true value of the quality character-
istic, x, falls in the acceptance region. Given that the true value is x, the distri-
bution of the observed value, Y, is normally distributed with a mean at x and
a variance equal to the variance of the measurement error, V, which is  A
part of this conditional distribution of Y given x falls in the rejection region,
depending upon how close x is to the specification limits. This is represented
by the shaded area in Figure 5.1, which is the conditional probability of reject-
ing a component, given that the true value of the characteristic is x. The prob-
ability of rejecting a good unit is the probability that Y falls in the rejection
region when X is in the acceptance region. Let this probability be denoted by
PRG. It is derived as follows:1

(5.5)

FIGURE 5.1
Rejecting a good unit.
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X

RejectReject
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As the conditional density function of Y is normal with a mean of x and a
variance of  Eq. (5.5) can be written after standardization (Z is the stan-
dard normal variable) as:

(5.6)

In Eq. (5.6), Φ [ ] is the cumulative probability of standard normal variable Z at
the value enclosed within brackets. It can be seen that as σv decreases (that is, as
the precision of the measurement system improves), {Φ[(USL − x)/σv] −
Φ[(LSL − x)/σv]} in Eq. (5.6) approaches one when x is in the interval (LSL,
USL). This will cause [ {Φ[(USL − x)/σv] − Φ[(LSL − x)/σv]}f(x) dx] to
approach  f(x)dx, and the probability of rejecting a good unit, PRG, will
approach zero, which is the target value.

The probability of accepting a good unit, denoted by PAG, is the difference
between the probability that the true value, X, falls in the acceptance region and

FIGURE 5.2
Accepting a defective unit.
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the probability of rejecting a good unit, PRG, given in Eq. (5.6), and is equal to

(5.7)

It can be seen that as σv decreases (that is, as the precision of the measure-
ment system improves), [ {Φ[(USL − x)/σv] − Φ[(LSL − x)/σv]}f(x)dx]
approaches f(x)dx, and the probability of accepting a good unit, PAG , based
on the observed value, Y, will approach the probability of accepting a good
unit based on the true value, X, which is the target value.

Now let us consider Figure 5.2 in which the true value of the quality char-
acteristic, x, falls in the rejection region. Given that the true value is x, the dis-
tribution of the observed value, Y, is normally distributed with a mean at x
and a variance equal to the variance of the measurement error, V, which is 
A part of this conditional distribution of Y given x falls in the acceptance
region, depending upon how close x is to the specification limits. This is rep-
resented by the shaded area in Figure 5.2, which is the conditional probability
of accepting a component, given that the true value of the characteristic is x.
The probability of accepting a defective unit is the probability that Y falls in
the acceptance region when X is in the rejection region. Let this probability be
denoted by PAD. It is derived as follows:

(5.8)

It can be seen that as σv decreases (that is, as the precision of the measurement
system improves), {Φ[(USL − x)/σv] − Φ[(LSL − x)/σv]} in Eq. (5.8) approaches
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zero when x is in the interval (– ∞, LSL) or (USL, ∞). This will cause the prob-
ability of accepting a bad unit, PAD, to approach zero, which is the target value.

The probability of rejecting a defective unit, denoted by  is the differ-
ence between the probability that the true value, X, falls in the rejection
region and the probability of accepting a defective unit, PAD, given in Eq. (5.8),
and is equal to

(5.9)

It can be seen that as σv decreases, PAD approaches zero, and the probability of
rejecting a defective unit, PRD, based on the observed value, Y, will approach
the probability of rejecting a defective unit based on the true value, X, which
is the target value.

Similar probabilities of correct and wrong decisions in estimation of process
capability indexes and process control can be derived. From the above analyses,
it is clear that reduction of  the variance of measurement error, will increase
the probabilities of making correct decisions. The estimation of the components
of   variance of operator reproducibility, and  variance of gauge
repeatability) will be described next.

5.3 Estimation of the Variance Components
of Measurement Error

The estimation of  variance of operator reproducibility, and  variance
of gauge repeatability, is done by conducting Gauge Repeatability and Repro-
ducibility studies (Gauge R&R studies), described in detail in the Measurement
Systems Analysis publication of QS-9000.2 The recommended procedure is as
follows:

1. Collect a sample batch containing n parts that represent the actual
or expected range of process variation. 

2. Select k operators (inspectors or appraisers), and let each operator
measure the n parts in a random order and record the measure-
ments. The gauge selected must have a discrimination of at least
one tenth of the process variation. That is, if the expected process
variation is 0.001", then the least count of the gauge should be at
least 0.0001".

3. Repeat the cycle using the same k operators m times, changing the
order of measurement in each cycle.

The method of estimation of the variance components will be illustrated in
Example 5.1.
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Example 5.1
Table 5.1 contains the observations recorded in a Gauge R&R study con-
ducted with ten parts, three operators, and two cycles. Estimate the variances
of operator reproducibility and gauge repeatability.

In addition to the observations, the table also contains the averages and ranges
for the measurements of each part for each operator. Let the average of all
the readings taken by operator i be , i = 1, 2, and 3. In the table,  = 25.133,

 = 25.132, and  = 25.129. Also, let the average range of the readings
taken by operator i be  In Table 5.1,  = 0.038,  = 0.036, and  = 0.033.
Let the average of these three ranges   and  be  In Example 5.1:

 = (0.038 + 0.036 + 0.033)/3 = 0.036 

This range represents the variation due to the gauge, and the estimate of the
standard deviation of the gauge repeatability is obtained by dividing  by the
appropriate d2, tabulated in Table A.4 in the Appendix. The sample size (n)
here is 2, as each range is computed from two observations. From Table A.4,
d2 for n = 2 is 1.128, hence the estimate of σg is

 = 0.036/1.128 = 0.032

and the estimate of the variance of gauge repeatability is 

 = 0.0322 = 0.001024

The range of the three  represents the variation due to the operators, so the
estimate of the standard deviation of the operator reproducibility is obtained
by dividing the range of the three  by the appropriate d2. As this range is
computed from three observations ( , , and ), n = 3, and the value of
d2 for n = 3 is 1.6929. The range of  is

25.133 − 25.129 = 0.004

Therefore, the estimate of σo is

 = 0.004/1.6929 = 0.0024

and the estimate of the variance of operator reproducibility is 

 = 0.00242 = 0.00000576 

Now the estimate of the total variance of the measurement system,  is
obtained as:

Xi X1

X2 X3

Ri. R1 R2 R3

R1,( R2, R3 ) R.

R

R

σ̂g

σ̂g
2

Xi

Xi

X1 X2 X3

Xi

σ̂o

σ̂o
2

σv
2,

σ̂v
2 σ̂g

2 σ̂o
2+=

 0.001024 0.00000576+ 0.00102976= =



Operator 3
Measurements

e 1 2 Range

25.22 25.19 25.205 0.03
25.29 25.32 25.305 0.03
24.97 24.99 24.98 0.02
25.00 25.01 25.005 0.01
25.03 25.06 25.045 0.03
25.41 25.39 25.4 0.02
24.98 25.05 25.015 0.07
25.12 25.16 25.14 0.04
25.08 25.02 25.05 0.06
25.15 25.13 25.14 0.02

6 25.1285 0.033

X

TABLE 5.1

Data for Example 5.1

Operator 1 Operator 2
Measurements Measurements

Part No. 1 2 Range 1 2 Rang

1 25.21 25.24 25.225 0.03 25.20 25.23 25.215 0.03
2 25.33 25.31 25.32 0.02 25.31 25.28 25.295 0.03
3 24.98 25.01 24.995 0.03 25.02 25.00 25.01 0.02
4 24.99 24.98 24.985 0.01 24.98 24.99 24.985 0.01
5 25.02 25.06 25.04 0.04 25.03 25.08 25.055 0.05
6 25.40 25.38 25.39 0.02 25.39 25.36 25.375 0.03
7 24.97 25.02 24.995 0.05 24.96 25.01 24.985 0.05
8 25.11 25.18 25.145 0.07 25.14 25.19 25.165 0.05
9 25.08 25.01 25.045 0.07 25.09 25.04 25.065 0.05
10 25.17 25.21 25.19 0.04 25.15 25.19 25.17 0.04
Averages 25.133 0.038 25.132 0.03

X X
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and the estimate of the standard deviation of the measurement system, σv , is

This value is used in Eqs. (5.6) through (5.9) for computing the probabilities
of wrong and correct decisions.

The standard deviation of the observe value, Y, which is σy, can be estimated
using all 60 observations in Table 5.1. The standard deviation (s) of the 60 obser-
vations which is the estimate of σy is 

 = 0.1352

and the estimate of the variance of Y, which is the total variance, is 

 = 0.13522 = 0.0183

Now using Eq. (5.3), the estimate of the variance of X which is the part-to-
part variance or the product variance is obtained as follows:

and the estimate of the standard deviation, σx, is

5.4 Minimizing the Effect of Measurement Error

The measurement system consists of the operator and the gauge. The dis-
crimination of a measurement system is its capability to detect and indicate
even small changes of the measured quality characteristic.2 In order for the
measurement system used to have adequate discrimination capabilities so
that the probabilities of making the correct decisions involving process capa-
bility, process setting, process control, and inspection are maximized, the
components of its variance must be very small relative to the total variance.
The following percentage values capture the magnitudes of the components
of the measurement system variance (MSV), relative to the total variance:

(5.10)

(5.11)

(5.12)

σ̂v 0.00102976 0.0321= =

σ̂y

σ̂y
2

σ̂x
2 σ̂y

2 σ̂v
2–=

 0.0183 0.00103– 0.01727= =

σ̂x 0.01727 0.1314= =

Gauge adequecy Gauge variance (GV) 100 g

sˆ y

-----×=

Operator adequecy Operator variance (OV) 100
sˆ o

sˆ y

-----×=

Measurement system adequecy MSV 100
sˆ v

ˆ
-----×=
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In the above relations, the denominator  can be replaced by the tolerance
range, which is the difference between the upper and lower specification
limits. These percentages have to be very small, if the MSV is less than or
equal to 10%, then the measurement system is considered adequate. If it is
greater than 10% but less than or equal to 30%, then the system may be
acceptable based on the importance of the application. If the MSV is greater
than 30%, then the measurement system requires improvement.2 If the value
of the MSV is large, then GV and OV can be used to identify the particular
component (operator or gauge) that is the source of larger variation, and
steps must be taken to reduce the associated variance component.

In Example 5.1, the percentage values are

It can be seen that as the MSV is 23% (>10%), the measurement system
requires improvement. From GV and OV, it is obvious that the gauge used is
not adequate. The gauge used currently must be replaced by a new gauge
with better precision (smaller variance). 

If the MSV is greater than 30%, then QS-9000 recommends taking multiple,
statistically independent measurement readings of the quality characteristic
and using the average of these readings in place of individual measurements as
a temporary measure until a permanent solution is found. As the variance of
the average is smaller than the variance of individual readings, this measure
increases the probability of making correct decisions. The number of multiple
readings for a specified MSV can be easily found as illustrated now. Let us
assume that in Example 5.1, the user wants to reduce MSV from 23.74% to 15%.
Then, using Eq. (5.12),

whereas the current  = 0.0321. Let the number of repeated readings be m.
Then,

from which 

m = (0.0321/0.0203)2 = 2.5

which is rounded up to 3. Therefore taking three readings of the quality
characteristic and using the average of these three readings will reduce the

σ̂y

Gauge adequacy
Operator adequacy
Measurement system adequacy

GV 100 0.032/0.1352× 23.67%= =

OV 100 0.0024/0.1352× 0.02%= =

MSV 100 0.0321/0.1352× 23.74%= =

sˆ v

MSV σ̂y×
100

-------------------------=

 15 0.1352/100× 0.0203= =

sv

0.0321
m

---------------- 0.0203,=
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MSV to 15% from 23.74%. QS-9000 emphasizes that this method is only a
temporary step until permanent improvements are made on the measure-
ment system.

5.5 Other Issues Related to a Measurement System

In addition to the bias, repeatability, and reproducibility of a measurement
system, QS-9000 also emphasizes its linearity and stability. Linearity mea-
sures the difference in the bias values through the expected operating range
of the gauge, and stability is the total variation in the measurements obtained
with a measurement system over long period of time. 

5.6 References 

1. Basnet, C. and Case, K.E., The effect of measurement error on accept/reject
probabilities for homogeneous products, Qual. Eng., 4(3), 383–397, 1992.

 2. Measurement Systems Analysis, QS-9000, Automotive Industry Action Group,
Southfield, MI, 1998.

5.7 Problems

1. The following observations were obtained in a gauge capability
study. Three parts were measured by two operators. Each part was
measured three times by each operator. 

a. Estimate the variances due to gauge and operators.
b. Estimate the MSV. If the MSV is to be 15%, what should be the

number of repetitions? Comment on the answer.

Part Number

Operator 1 
Measurements 

Operator 2
Measurements

1 2 3 1 2 3

1 10 11 10 11 14 12
2 9 8 11 10 11 9
3 11 11 12 12 14 12
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2. In a study to estimate the gauge repeatability and operator repro-
ducibility, two operators use the same gauge to measure five parts
each, repeating the measurements three times for each part. The
data are shown below. 

a. Estimate the variances due to gauge and operators.
b. Estimate the MSV. If the MSV is to be 15%, what should be the

number of repetitions? Comment on the answer.

Part Number

Operator 1
Measurements

Operator 2
Measurements

1 2 3 1 2 3

1 5 4 5 5 5 4
2 4 4 4 4 4 5
3 5 5 4 4 4 4
4 4 4 5 3 4 4
5 5 5 5 5 5 6
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6
Optimum Process Level

CONTENTS
6.1 Introduction 
6.2 Optimum Process Level for Characteristics with Both Lower

and Upper Limits  (Nominal-the-Best Type of Characteristics)
6.2.1 Normal Density Function 
6.2.2 Beta Density Function

6.3 Optimum Process Level for Quality Characteristics with Only 
a Lower Limit (Larger-the-Better Type of Characteristics)
6.3.1 Accepted Product (X > L)
6.3.2 Rejected Product  (X < L)

6.4 Optimum Process Level and Upper Limit 
of a Canning Problem

6.5 Optimum Process Level without Considering Costs
6.6 References
6.7 Problems

6.1 Introduction

As we saw in Chapter 4, the variance of the probability distribution of the qual-
ity characteristic is a function of the process selected to generate the character-
istic. The optimum value of the other important parameter of the probability
distribution, the mean or the process level, is determined by the user and can
be achieved by process setting before start of the manufacture.  The optimum
value of the process mean, denoted by µ0 and which optimizes some objective
function, can be found. It should be noted that the main emphasis of this sec-
tion is the modeling of objective functions under different conditions. A user
may not use any of the specific models presented in this chapter, but it is the
author’s intention to familiarize readers with some available models and
solution procedures in this area so they can build appropriate models of
interest.
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6.2 Optimum Process Level for Characteristics with Both
Lower and Upper Limits  (Nominal-the-Best Type of
Characteristics)

For these types of characteristics with large variances, it is possible that the
actual range of the characteristics may fall outside the tolerance region
bounded by the lower and upper specification limits. Though such processes
are not the best possible candidates for generating these characteristics, the
process engineer may not have any other option. In such cases, the costs due to
scrap and rework can be minimized by using the optimum process mean/level.
If the cost to rework or scrap due to manufacturing a product with a quality char-
acteristic above the upper specification limit is the same as the cost incurred for
reworking or scrapping a product with a quality characteristic below the lower
specification limit, then it is intuitive to set the optimum process mean, µ0, equal
to the mid-point of the tolerance interval. Now we will find the optimum process
mean when these costs are not equal.13 

The following assumptions are made:

1. The quality characteristic X (diameter, length, thickness, etc.) fol-
lows the probability density function f(x), with an unknown mean
µ and a known standard deviation σ.

2. The minimum and maximum possible values of  X are Xmin and
Xmax, respectively.

3. The lower and upper specification limits of the tolerance region
are LSL and USL, respectively.

4. The cost of rework or scrap when the quality characteristic exceeds
USL is CUSL, and the rework or scrap cost when the quality char-
acteristic is less than LSL is CLSL.  

The aim here is to find the value of the process mean µ that minimizes the
total expected cost per item, which is the sum of the expected cost per item
when its quality characteristic X is less than LSL and the expected cost when
X is greater than USL.
That is,

 (6.1)

where TC is the total expected cost per item, E(CLSL) denotes the expected cost
of rework or scrap per item when X < LSL, and E(CUSL) is the expected cost of
rework or scrap per item when X > USL:

(6.2)

TC E CLSL( ) E CUSL( )+=

E CLSL( ) CLSL probability that X is less than LSL×=

CLSL P X LSL<[ ]×=
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and

(6.3)

The probabilities in Eqs. (6.2) and (6.3) are represented as shaded areas on the
density function fx(x) in Figure 6.1.

Now, the expected costs can be written as:

(6.4)

and

(6.5)

Hence, the total expected cost is

(6.6)

In Eq. (6.6), the total expected cost per item is denoted by TC(µ) to signify that
it is a function of the decision variable µ.

The expression in Eq. (6.6) is the objective function of our optimization prob-
lem. It consists of components E(CLSL) and E(CUSL), out of which E(CLSL) decreases
and E(CUSL) increases as µ increases and vice versa (see Figure 6.2).This is based
on the assumption that the function TC(µ) has a unique minimum value cor-
responding to the optimum process level µ0.  At this stage, the optimum value

FIGURE 6.1 
Acceptance and rejection probabilities.

LSL USLµXmin Xmax

P[X > USL]

f(x)

P[X < LSL]

E CUSL( ) CUSL probability that X is greater than USL×=

CUSL P X USL>[ ]×=

E CLSL( ) CLSL f x( ) xd
Xmin

LSL

∫=

E CUSL( ) CUSL f x( ) dx
USL

Xmax

∫=

TC m( ) CLSL f x( ) dx CUSL f x( ) dx
USL

Xmax

∫+
Xmin

LSL

∫=
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of µ can be obtained by increasing µ systematically from a small value and
numerically evaluating TC(µ) at those values of µ until it attains its lowest
value.  This trial-and-error procedure will yield the global optimal solution if
there is a unique optimal solution, or just one of the local optimal solutions
otherwise.

It is possible to prove that this problem has a unique optimal solution and
derive expressions to find that solution.  Upon examining the expression for
TC(µ) in Eq. (6.6), it can be seen that the decision variable µ does not appear
explicitly on the right-hand side. Hence, a new variable, W, is introduced: 

(6.7)

Let the probability density function of W obtained from f(x) be g(w), which
has a range of . It can be seen that the mean and
variance of W are 0 and 1, respectively. As dx = σ dw,  Eq. (6.6) can be written
as:

(6.8)

The solution procedure consists of the following steps:

1. Differentiating TC(µ) with respect to µ, setting the derivative equal
to 0, and solving for µ0

2. Proving that the optimum value of µ obtained in step (1) is the
unique optimum solution that indeed minimizes TC(µ) by showing
that the second derivative of TC(µ) with respect to µ is >0 at µ = µ0.

FIGURE 6.2 
Relationship of costs to mean.

Cost
TC(  )

E(CUSL)

E(CLSL)

µ
µ0

µ

W X µ–
σ

-------------=

Xmin m–( )/s, Xmax m–( )/s

TC m( ) CLSLs g w( ) dw CUSLs g w( ) dw
USL−µ( )/σ

Xmax−m( )/σ

∫+
Xmin−m( )/σ

LSL−m( )/σ

∫=
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Using the Leibniz rule, we get:

(6.9)

which yields:

(6.10)

If the ordinates at Xmax and Xmin—that is, g  and g[(Xmin −
µ)/σ]—are assumed to be equal to 0, then Eq. (6.10) reduces to

(6.11)

Equation (6.11) states that the total cost of rework or scrap is minimized
when the mean of the distribution of the quality characteristic is located so
that the ordinates of the distribution of W at the upper and lower specifica-
tion limits are proportional to the ratio of the rejection costs at the lower and
upper specification limits. It can be seen from both Eqs. (6.10) and (6.11) that
the optimal solution does not depend upon the individual values of CLSL and
CUSL but on the ratio of these costs. In order for the solution given in  Eq. (6.10)
to be optimal, the second derivative of TC(µ) with respect to µ at the optimal
value has to be >0. This means that: 

 

(6.12)

From Eq.(6.12),

(6.13)

d TC m( )( )
dm

------------------------ sCLSL g LSL m–
s

------------------- 
  1

s
---– 

  g
Xmin m–

s
-------------------- 

  1
s
---– 

 ×–×=

+sCUSL g
Xmax m–

s
-------------------- 

  1
s
---– 

  g USL m–
s

-------------------- 
  1

s
---– 

 ×–× 0=

CLSL g LSL m–
s

------------------- 
  g

Xmin m–
s

-------------------- 
 – CUSL g USL m–

s
-------------------- 

  g
Xmax m–

s
-------------------- 

 –=

CLSL

CUSL
-----------

g USL µ–
s

--------------------- 
 
 

g Xmax m–

s
--------------------- 

 –

g LSL m–
s

------------------- 
  g Xmin m–

s
--------------------- 

 –-----------------------------------------------=

Xmax m–( ) s⁄[ ]

CLSL

CUSL
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g USL µ–
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--------------------- 
 
 

g LSL m–
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 

---------------------=

CLSL g ′ LSL m–
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  g ′
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 – CUSL g ′ USL m–
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Xmax m–

s
-------------------- 
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CLSL
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Combining this with Eq. (6.10), we get the following condition for optimality:

   (6.14)

If   , then Eq. (6.14) reduces to: 

(6.15)

Now we check the condition for optimality in Eq. (6.15) for normal and beta
distributions and derive the optimal mean, µ0, using Eq. (6.10).

6.2.1 Normal Density Function

In the case of the normal density function, Xmin = – ∞ and Xmax = + ∞; hence,
. Therefore, condition (6.15) has to be

satisfied for optimality:

Hence, 

 (6.16)

and

 (6.17)

As LSL < USL, , hence, 
and the optimality condition in Eq. (6.15) is satisfied. Now, the optimal mean

g ′ LSL m–
s
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can be determined using Eq. (6.11):

For normal density function, this becomes:

(6.18)

Taking natural logarithms of both sides of Eq. (6.18) yields:

(6.19)

(6.20)

When

, and . (6.21) 

In Chapter 3 (Loss Function), we saw that the optimal value (target value)
of the mean of a nominal-the-best characteristic is the nominal size that min-
imizes the external failure costs, captured in the expected loss.  The optimal
value in Eq. (6.20) considers only the expected costs of rejection, which are the
internal failure costs. From Eq. (6.20), the amount by which the optimal mean,
µ0, is shifted on either side of the nominal size is

which is a function of the process variance σ2, the tolerance range (USL – LSL),
and the ratio of the costs of rejection, CLSL and CUSL. If CLSL < CUSL,
is negative and the optimal mean will be shifted towards the lower specifica-
tion limit. On the other hand, if CLSL > CUSL,  is positive and the
optimal mean will be shifted towards the upper specification limit.
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Example 6.1 
The specification limits of the quality characteristic of a component are 1" ±
0.04, which means the lower specification limit and upper specification limits
are 0.96" and 1.04", respectively.  The undersized and oversized costs are $ 10.00
and $8.00, respectively. The process standard deviation is 0.02. What is the
optimal mean?

LSL = 0.96"
USL = 1.04"
σ2 = 0.022

CLSL = $10.00 
CUSL = $8.00

If the process variance is 0.012, then µ0 = 0.0028 + 1 = 1.0028".

6.2.2 Beta Density Function 

There are some disadvantages in using normal density function as the prob-
ability density function of some quality characteristics.  These are mainly due
to the stiffness of the normal function, as only two parameters (namely, the
mean µ and the variance σ2) are available to define the function. The beta dis-
tribution solves this problem to an extent, because it is defined by four
parameters, thus yielding more flexibility. This makes the beta distribution a
much better candidate for fitting real-life distributions of quality characteris-
tics, as it covers a wide range of shapes, including symmetrical, rectangular,
and skewed distributions.  In addition, it has a finite range, unlike the normal
distribution.  This probability distribution was introduced in Chapter 1 with
a = Xmin and b = Xmax.

The beta probability density function is 

   
(6.22)

In Eq. (6.22), γ and η are the shape parameters of the beta distribution.
These, along with the lower and upper limits of the range of X, Xmin and Xmax,
are the four parameters of the distribution.  The function B(γ, η) is called the
beta function and is defined as:

(6.23)

m0
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------ 
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--------------------------------------------------
x Xmin–

Xmax Xmin–
---------------------------

g 1–

1
x Xmin–

Xmax Xmin–
---------------------------–

h 1–

,=

Xmin x Xmax≤ ≤

B g,h( ) vg 1– 1 v–( )h−1dv
0

1

∫=
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The mean and variance are functions of γ, η, Xmin, and Xmax. The mean is equal to 

(6.24)

In the problem of determining the optimal mean, it is reasonable to assume
that the shape and the range remain unchanged regardless of the value of the
mean and that only the location of the distribution changes depending upon
the optimal mean. This means that in Eq. (6.24), (Xmax – Xmin) and  can
be treated as constants.  Now, the mean µ can be written as: 

   

where R = (Xmax – Xmin)  and  K = . 
The density function g(w) is the standardized beta distribution given by: 

(6.25)

where . When γ = η = 1, g(w) is a uniform density func-
tion. When γ and η are not equal to 1,  =  =

 =  and the optimal condition in Eg. (6.14) to
be satisfied reduces to

 

It can be shown that the above condition is equivalent to

which can be simplified to

which becomes:

(6.26)

m Xmax Xmin–( ) g
g h+
------------ 
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m R K× Xmin+=
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sw m Xmin–+
R

----------------------------------
g 1–

1
sw m Xmin–+

R
----------------------------------–

h 1–

=

K1 σw RK+( )g−1 1 sw RK+
R

-----------------------– 
 

h 1–

=

K1 σ RB g η,( )⁄[ ]=
g Xmin m–( ) s⁄[ ] g Xmax m–( ) s⁄[ ]
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 
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s

------------------- 
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s
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R LSL– m Xmin–+
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----------------------------– h 1–
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It can be seen that the left-hand side of Eq. (6.26) is >0 when γ is not equal to
1, whereas the right-hand side is <0 when η is not equal to 1, assuming that
Xmin < LSL < USL < Xmax.  Hence, the optimality condition is satisfied when
both γ and η are not equal to 1.

Now the optimal µ can be obtained using Eqs. (6.11) and (6.25): 

(6.27)

As it is not possible to get a closed-form expression for the optimal mean, µ0,
the solution of Eq. (6.27) requires the use of numerical techniques.

Example 6.2
The specification for the diameter of a shaft is 3.00" ± 0.01". The cost of
reworking an oversized shaft is $20.00, and the cost of scrapping an under-
sized shaft is $200.00.  Find the optimal mean for the processes in which the
diameters obey the following probability density function: beta density func-
tion with range R = 0.036", γ = 4.0, and η = 2.0.

SOLUTION
LSL = 2.99" and USL = 3.01", CLSL = $200.00, CUSL = $20.00, and (CLSL/CUSL) =
10.0. Using Eq. (6.27) gives:

 

which yield three possible values for µ0: 2.976, 3.008, and 3.016.  As the mean
has to be in the interval (2.99, 3.01), µ0 is 3.008.

6.3 Optimum Process Level for Quality Characteristics 
with Only a Lower Limit (Larger-the-Better Type
of Characteristics)

The objective of this section is to develop a methodology to determine the
optimal mean of a quality characteristic of the larger-the-better type (L type).
Material strength and miles per gallon are some examples of the L-type qual-
ity characteristics. These quality characteristics have a lower specification
limit but no upper specification limit, and the higher the mean for the L-type

CLSL

CUSL
-----------

USL m– RK+( )γ−1 1 USL µ– RK+
R

-----------------------------------–( )h−1

LSL m– RK+( )γ−1 1 LSL µ– RK+
R

----------------------------------–( )h−1
------------------------------------------------------------------------------------------=

3.022 m–( )3 m 2.986–( )
3.014 m–( )3 m 2.978–( )

---------------------------------------------------------- 10.00=
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quality characteristic, the better. However, the manufacturing cost increases
when the mean increases, thus it is not possible to increase the value of an L-type
quality characteristic without any bound. The challenge is to find an optimal
mean for the L-type quality characteristic such that it will be at the highest level
possible, while at the same time minimizing the manufacturing cost. The mate-
rial presented in this section is based on the work by Carlsson.5 The following
assumptions are made:

1. The quality characteristic X has a lower specification level, denoted
by L.

2. Products with value of the quality characteristic denoted by X ≥ L
are accepted and sold at full price, fa. Customers will pay an addi-
tional price of ca(x – L), where x is the value of X.

3. Products with value of X < L  are reprocessed and sold at a reduced
price, fr.

4. The quality characteristic X is normally distributed with a known
variance σ 2 and an unknown mean µ, which is the decision
variable.

5. The producer’s manufacturing cost per item (UC) is separated into
a fixed cost b and a variable cost c, which depends on the value of
the quality characteristic X, which is x. Hence, the cost per item is

(6.28)

where b0 = b + c L  and  c0 = c.
The manufacturer’s income per unit depends upon whether the product is

accepted (that is, X > L) or rejected, reprocessed, or sold at a reduced price.

6.3.1 Accepted Product (X >>>> L)

The manufacturer receives $fa for an accepted item. As the customer is willing
to pay an additional price of  $ca(x – L), the total income to the manufacturer
for an accepted item is  fa + ca(x – L).

6.3.2 Rejected Product (X <<<< L)

The manufacturer receives $fr for a rejected item. It is reasonable to assume
that   fr < fa. The producer may have to compensate the customer for bad qual-
ity, not only by reducing the price from fa to f r, but also by a price reduction
proportional to the deficit in quality, which is equal to cr(L – x). Hence, the

UC b cx+=

b cx cL cL+–+=

b cL+( ) c x L–( )+=

b0 c0 x L–( ),+=
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total income to the manufacturer for a rejected item is fr – cr(L – x), which is
written as fr + cr(x − L). It is assumed that 0 < ca < cr < c0.

Now the optimal value of the mean µ of X that maximizes the total
expected net income per item will be obtained. The net income is the differ-
ence between the income per item and the manufacturing cost. The net
income per item depends upon whether the quality characteristic is greater
than or equal to or less than L: 

1.  X < L: The net income per item to the manufacturer is

(6.29)

2.  X > L:

(6.30)

Let a = fa – b0, r = fr – b0 (r < a), g = c0 – ca, and (1 – ρ) = .  So, c0

– cr = (1 – ρ)(c0 − ca) = g(1 − ρ). Now, Eqs. (6.29) and (6.30) can be written as:

(6.31)

and

(6.32)

Now the expected value of the net income per item is

(6.33)

In Eq. (6.33), f(x) = , as per assumption 4, above. Let z =
(x − µ)/σ . Then, x = σ z + µ and dx = σ dz. Let the density function of z be h(z),
which is the standard normal density function.  Now Eq. (6.33) can be written as:

(6.34)

λ1 x( ) f r cr x L–( ) b0 c0 x L–( )+[ ]–+=

f r b0–( ) c0 cr–( ) x L–( )–=

λ2 x( ) f a ca x L–( ) b0 c0 x L–( )+[ ]–+=

f a b0–( ) c0 ca–( ) x L–( )–=

c0 cr–( )/ c0 ca–( )

λ1 x( ) r g 1 r–( ) x L–( ), x L<–=

λ2 x( ) a g x L–( ), x L>–=

I m( ) λ1 x( ) f x( ) dx
−∞

L

∫ λ2 x( ) f x( ) dx
L

∞

∫+=

r g 1 r–( ) x L–( )–[ ] f x( ) dx a g x L–( )–[ ] f x( ) dx
L

∞

∫+
−∞

L

∫=

1/ 2πσ e− x−m( )2/2s2

I m( ) r g 1 r–( ) sz m L–+( )–[ ] 1
2π

----------e−z2/2 zd
−∞

L−m( )/s

∫=

a g sz m L–+( )–[ ] 1
2π

----------e−z2/2 zd
L−m( )/s

∞

∫+
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Let (µ – L) = δ. Now the decision variable is δ instead of µ and  Eq. (6.34) is

(6.35)

(6.36)

where Φ(h) = dz, which is the cumulative probability of a
standard normal variable.  In Eq. (6.36),

Also using the substitution z2/2 = v in  yields
the following:

I d( ) r g 1 r–( ) sz d+( )–[ ] 1
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Now  Eq. (6.36) becomes:

(6.37)

Carlsson5 introduces an income function which he calls “the expected rela-
tive net income level per item,” given by:

(6.38)

(6.39)

where  k = . 
The problem now is to find δ that maximizes Ir(δ ) in Eq. (6.39), which is

done by setting the partial derivative of Ir(δ ) with respect to 0 and solving for
δ . Using the Leibniz rule,

Also,

Hence,

(6.40)

The optimal value of δ can be obtained by solving Eq. (6.40) using numerical
methods. Also, the proof of optimality has to be performed numerically.
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As a special case when ρ = 0,  Eq. (6.40) results in: 

and the optimal value of  δ is given by:

(6.41)

It can be seen that the solution given in Eq. (6.41) is feasible only if  < 0.
Carlsson5 reports that δ0/σ is an approximately linearly decreasing func-

tion of ln(k). He also found it to be independent of ρ for values of k < 0.1 and
suggests that Eq. (6.41) as an approximation formula to find the optimal
value of δ0 when k < 0.1. Table 6.1 contains comparison of exact values of Ir(δ )
using numerical techniques and the approximate values of Ir(δ ) obtained
using Eq. (6.41), for some selected values of the cost and income parameters.
It can be seen that the approximation works reasonably well.

Recently, Gungor and Chandra10 solved the problem of finding the optimal
mean of a larger-the-better type of characteristic using a goal programming
approach. The goals are to maximize the process mean and to minimize the
manufacturing cost, proportion of rejects, and the expected loss.  

TABLE 6.1

Comparison of Exact and Approximate Values of 

σσσσ fr c0 ca cr a r g ρρρρ
δδδδ0 

(exact) k
δδδδ0 

(approximate)

0.05 6 1 0.8 0.6 3 1 0.2 –1 0.16 0.005 0.15
0.05 6 1 0.8 0.8 3 1 0.2 0 0.16 0.005 0.15
0.05 3 1 0.8 1.2 3 –2 0.2 2 0.17 0.002 0.16
0.10 6 1 0.8 0.6 3 1 0.2 –1 0.28 0.010 0.27
0.50 6 1 0.8 0.6 3 1 0.2 –1 1.02 0.050 1.02
0.05 3 1 0.8 0.6 3 –2 0.2 –1 0.17 0.002 0.16
0.05 3 8 0.8 0.6 3 –2 7.2 –0.03 0.1 0.072 0.093
0.50 3 8 0.8 0.6 3 –2 7.2 –0.03 0.01 0.72 Not feasible

a L = 10.0; b0 = 5; fa = 8.

e−d2/2s2

s 2p
---------------- k

s
---=

e−d2/2s2

k 2p=

−d2

2s2
--------- k 2p[ ]ln=

d2

s2
----- 2 k 2p[ ]ln–=

d0

s
----- k22p( )ln–=

k22p[ ]ln

δ0
a
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6.4 Optimum Process Level and Upper Limit 
of a Canning Problem

This section is based on the paper by Golhar and Pollock7 which analyzes a
canning problem where cans are filled with some ingredient.  Because of the
inherent variations present in the filling machine, the amount of ingredient
filled in a can is a random variable, with its own probability density function,
a mean, and a standard deviation.  The manufacturer must make sure that the
amount of ingredient in any can must be above a specified value. On the
other hand, if the amount of ingredient in a can is too much, then the manu-
facturer incurs a loss, because the cans are sold at a fixed price, regardless of
the actual amount of ingredient.  (Price is usually based on the stated quan-
tity on the label of a can.)  Hence, there is an optimum setting for the mean of
the distribution of ingredients in a can. Each can, after it is filled, will be
weighed and the cans for which the ingredients fall within the specified
lower limit and the optimum upper limit will be processed further and sold
in the market for a fixed price.  The cans for which the ingredients are either
below the lower limit or above the upper limit will be reprocessed. The repro-
cessing involves reclaiming the ingredients, which results in some cost.  The
objective is to find jointly the optimum values of the mean and the upper
limit which maximize the net profit per can.
We will assume that:

1. The weight of the ingredients in a can is a random variable, denoted
by X. The probability density function of X is f(x), which is assumed
to be a normal distribution with a mean µ (decision variable) and
a variance σ2 (known).  

2. The minimum weight of the contents in a can is L (given).  The
maximum weight is U, which is a decision variable.

3. The cost of contents is $C per unit weight. The cost of an empty
can is negligible.

4. Underfilled cans (X < L) and overfilled cans (X > U) are emptied
and the ingredients are reused, incurring a cost of $Cr (this could
include the cost of production time lost).

5. A can with contents weighing between L and U is sold in the market
for $A.

The schematic diagram of this process is given in Figure 6.3.

Objective
The objective in this problem is to find the optimum values of µ and U (µ0 and
U0) that maximize the expected profit per can. 
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Formulation of the Problem
Let the profit per can with ingredients weighing X be denoted by P[X; µ, U].
We have to consider separately the cans with contents in the range (L, U) and
the cans with contents less than L or greater than U. Now let us derive the
expected value of the profit per can, denoted by . The profit per can
depends upon whether its contents are within the acceptable range or not:

1. Cans with contents in the range L ≤ X ≤ U — As the cost/can = Cx
and the income/can = A, then, 

(6.42)

2. Cans with contents in the range  X < L  or  X > U — The expected
net profit per one such can equals −Cr + E[Profit].  

The outcomes of this problem are depicted in Figure 6.4, and now the
expected profit per can be written as:

FIGURE 6.3 
Schematic diagram of a canning process.

FIGURE 6.4
The outcomes of a canning problem.

Cans Filling process

Emptying/
reprocessing

Ingredients

Filled
can

Sold for $A/ can

X < L or 
X > U

L † X  † U
$ C

$ C r

Correct fill  

Outcome

Probability _ 

A − Cx  − Cr + E[Profit]

 P[X < L] + P[X > U]P[L < X < U]

L < X < U Underfill or
Overfill

 X < L or    X > U

P µ, U( )

profit/can A Cx–=

E Profit per can[ ] E Profit/CF[ ] P CF[ ] E Profit UF or OF⁄[ ]   +=

P UF[ ] P OF[ ]+{ }
©2001 CRC Press LLC



where CF = correct fill (L ≤ X ≤ U), OF = overfill (X > U), and UF = underfill
(X < L).

(6.43)

So the expected profit per can is

(6.44)

where p = 1 − P[L  ≤ X  ≤  U]  =  P[X < L]  +  P[X > U]. 
In Eq. (6.44),

(6.45)

Consider  in Eq. (6.45). Let Z = (X − µ)/σ .
Then, 

(6.46)

Let g(z)  be the density function of  Z which is the standard normal variable: 

(6.47)
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Consider   in Eq. (6.47), and let : 

(6.48)

Now using  Eq. (6.48) in the right-hand side of  Eq. (6.47) results in:

(6.49)

Using  Eq. (6.49) in  Eq. (6.46) results in:

(6.50)

Using the substitution t1 = (U − µ)/σ and t2 = (U − µ)/σ in Eq. (6.50) gives: 

(6.51)
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Now we will use  Eq. (6.51) in  Eq. (6.45), which then becomes:

(6.52)

In  Eq. (6.52),

and

Hence, Eq. (6.52) can be written as:

(6.53)

Now the problem is to find the optimum values of µ and U that maximize
the expected profit per can given in  Eq. (6.53).  It is necessary to show that

is a concave function of both µ and U, which is very difficult to do
analytically.  It has to be done numerically. The optimal values of µ and U can
be obtained by setting the partial derivatives of  with respect to µ and
U equal to 0 and solving the resulting equations. Golhar and Pollock8 report
the following equations to obtain the optimal values of µ and U:

(6.54)

and

(6.55)

P m, U( ) A 1 p–( ) Cm 1 p–( )– Cs g t2( ) g t1( )–{ }–=

P m, U( ) Cr–{ } p+

P m,U( ) 1 p–[ ] A 1 p–( ) Cm 1 p–( )– Cs g t2( ) g t1( )–{ }– Cr– p=

P m, U( ) A Cm–
Crp
1 p–( )

----------------
Cs g t2( ) g t1( )–{ }

1 p–( )
----------------------------------------------––=

1 p–( ) g z( ) dz
t2

t1

∫=

F t1( ) F t2( ) F t( ) g z( )dz
−∞

t

∫= 
 –=

Crp
1 p–( )

----------------– C– r
1 1 p–( )–

1 p–( )
-------------------------

Cr

1 p–( )
----------------– Cr+= =

P m, U( ) A Cm– Cr
Cr Cs g t2( ) g t1( )–{ }+

1 p–( )
----------------------------------------------------------–+=

P m, U( )

P m, U( )

∂P mmU( )
∂m

------------------------ F t1( ) F t2( ) f t2( ) t1 t2–[ ]–– 0= =

∂P mmU( )
∂U

------------------------ t1 F t1( ) F t2( )–{ } f t1( ) f t2( )–{ }
Cr

Cs
-------–+ 0= =
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Golhar and Pollock7 introduce a constant M = Cr/Cσ and obtain optimum
values of t1 and t2 using a computer program. The optimal values of µ and U
are obtained from t1 and t2 as follows:

(6.56)

(6.57)

where t10 and t20 are the optimal values of t1 and t2, respectively. The authors
provide a table containing the optimal values of t1 and t2 for selected values
of M.7 For example, let L = 5.0, C = $0.50, Cr = $0.10, and σ = 0.20. Then M=

. From the table, the optimal values of t1 and t2 are
1.657 and –0.750, respectively. The optimal values of µ and U are

and

The optimum mean is not located at the center of the “tolerance” interval (5.0,
5.2407). The mid-point is  (5.0 + 5.2407)/2 = 5.12035, whereas the optimum
mean is 5.075. 

Let us now examine the effect of the process variability quantified in the
standard deviation, σ, on the expected net profit per can.  Suppose that the
process does not have any variability — that is, σ = 0.0. Then, the amount of
fill will be exactly equal to L and the expected net profit per can is 

   (6.58)

This is the maximum profit  (ideal).  The expected profit  for a given σ
> 0.0 when µ = µ0 and U = U0 can be compared with the value given in Eq. (6.58).
Let the difference between  and the maximum profit given in Eq. (6.58)
be dP. That is,

   (6.59)

Golhar and Pollock7 provide values of dP (denoted by  by the authors) for
selected values of M, in units of Cσ. For example, when L = 5.0, C = $0.50,
Cr = $0.10, and σ = 0.20, M = 1 and dP = 1.409 in units of Cσ, which means the
reduction in the expected profit per can because of a standard deviation of
0.20 is 1.409 × 0.50 × 0.40 = $0.28. Hence, the optimal expected profit per can

m0 L st20–=

U0 m0 st10+=

0.10 0.50 0.20×( )⁄ 1.0=

m0 5.0 0.10 –0.75( )– 5.075= =

U0 5.075 0.10 1.657( )+ 5.2407= =

E profit[ ] A CL–=

P m0, U0( )

P m0,U0( )

dP A CL– P m0, U0( )–=

E
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for the given parameter values is

Suppose that σ is halved; that is, the standard deviation is now 0.1. The new
value of M is

 

The value of dP from the paper by Golhar and Pollock7 for M = 2 is 1.663 in
units of Cσ. Therefore, the new expected profit per can is

The net savings per can as the result of reducing the standard deviation by
half is 

Savings/can =  [A − 2.67] − [A − 2.78] = 2.78 − 2.66 =  $0.11

This savings can be used as the basis of justifying investment in the process
to improve it (reduce its variation).

Some of the researchers who have analyzed similar problems include
Al-Sultan and Pulak,1 Arcelus and Rahim,2 Bettes,3 Boucher and Jafari,4

Golhar and Pollock,7 Hunter and Kurtha,11 and Schmidt and Pfeifer.12 

6.5 Optimum Process Level without Considering Costs

In all the models discussed in this chapter, the objective function was either
minimizing the expected cost or maximizing the expected net profit per unit.
The analyses did not always yield closed-form solutions, necessitating the
use of numerical methods.  There are some real-life applications in which the
objective is not to minimize the expected cost or to maximize the expected net
profit per unit, but to satisfy one or more regulations. One such case is pre-
sented next. This problem is related to the food industry. 

The manufacturers of a food product need to satisfy requirements specified
by federal agencies. Two conditions to be satisfied are

1. Within a specified number of units sampled, there shall be no
weight below the specified gross weight limit, which is computed
as (label stated weight–specified maximum allowable variation).

P m0, U0( ) A CL–( ) dP–=

A 0.5( )5 0.28– A 2.78–=–=

M 0.1
0.5( ) 0.1( )

------------------------- 2.0= =

P m0, U0( ) A 0.5( )5– 1.663( ) 0.5( ) 0.2( )– A 2.67–= =
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2. The net average weight of a specified number of sample units must
be greater than or equal to the label stated weight.

The problem is to find the optimal mean that will satisfy both these require-
ments.  The solution procedure will be illustrated using an example. It is
assumed that the weight of an individual sample, X, follows normal distribu-
tion with an unknown mean µ and a known standard deviation σ.

Example 6.3 
The label stated weight (LSW) of a can is 16 ounces, and the maximum allow-
able variation (MAV) is 0.044 ounces.  Assume that the standard deviation of
the process is 0.1.  Let the specified number of sample units in both require-
ments be ten.

REQUIREMENT 1 
Assuming that the samples are independent, the number of samples out of a
batch of ten with weight below (LSW – MAV) follows a binomial distribution.
Let p be the probability that any one sample has a weight below (LSW –
MAV). The requirement is

(6.60)

It can be seen that p has to be equal to 0 in order to satisfy this requirement,
which means that the optimal mean of the distribution of the weight of an
individual unit has to be infinity. As this is infeasible, the manufacturer has
to assume a certain risk by lowering the probability on the right-hand side of
Eq. (6.60).  Let this be 0.90, which implies a risk of 0.10 that the requirement
may not be met. Now p can be found using a modified Eq. (6.60):

As p = probability that X is less than (LSW – MAV),

P [X < LSW − MAV]  = 0.01

 

10
0 

  p0 1 p–( )10 1.00=

10
0 

  p0 1 p–( )10 0.90=

1 p–( ) 0.90( )0.10 0.99= =

p 0.01=

P Z
LSW MAV–( ) m0–

s
-------------------------------------------------< 0.01=
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where Z is the standard normal variable. From the standard normal table,

 

Hence 

 

REQUIREMENT 2 
Let be the sample mean of weights of ten sample units. Then,

  (6.61)

The sample mean  follows normal distribution with a mean µ (mean of X)
and a variance of σ2/10 . It can be seen that the mean of   has to be infinity
to satisfy Eq. (6.61). As in requirement 1, the manufacturer has to take a risk.
Let the right-hand side of Eq. (6.61) be 0.90, resulting in a risk of 0.10 that
requirement 2 may not be satisfied. Modified (6.61) is

From the standard normal table,

and

 

The optimal mean has to be 16.19 ounces in order to satisfy both requirements.

P Z 2.33–<[ ] 0.01=

LSW MAV–( ) m0–
s

------------------------------------------------- 2.33–=

m0 LSW MAV–( ) 2.33s+=

16 0.044–( ) 2.33 0.1 16.19 ounces=×+=

X

P X LSW≥[ ] 1.00=

X
X

P X LSW≥[ ] 0.90=

P Z
LSW m0–

s 10⁄
------------------------≥ 0.90=

p Z –
LSW m0–

s 10⁄
------------------------< 0.10=

–
LSW m0–

s 10⁄
------------------------ 1.28–=

m0 LSW 1.28 s
10

----------+=

16 1.280.10
10

---------- 16.04=+=
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6.7 Problems

1. The specification limits of the quality characteristic of a component
are 1" ± 0.005, which means the lower specification limit and upper
specification limits are 0.995" and 1.005", respectively. The under-
sized and oversized costs are $20.00 and $60.00, respectively. The
process standard deviation is 0.002. What is the optimal mean, if
the quality characteristic follows a normal distribution?

2. The specification limits of the quality characteristic of a component
are 20 ± 2, which means the lower specification limit and upper
specification limits are 18 and 22, respectively. The undersized and
oversized costs are $1.00 and $2.00, respectively. The process stan-
dard deviation is 0.50. What is the optimal mean, if the quality
characteristic follows a normal distribution?
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3. The specification on the diameter of a shaft are 2.00" ± 0.01". The
cost of reworking an oversized shaft is $20.00, and the cost of
scrapping an undersized shaft is $120.00. Find the optimal mean
for the processes in which the diameters obey the following prob-
ability density function: beta density function with range R = 0.020",
γ = 3.0, and η = 1.0.

4. The specification on the quality characteristic of a component are
3.00" ± 0.005". The cost of reworking an oversized component is
$200.00, and the cost of reworking an undersized component is
$10.00. Find the optimal mean for the processes in which the diam-
eters obey the following probability density function: beta density
function with range R = 0.040", γ = 2.0, and η = 3.0.

5. The label stated weight (LSW) of a cereal box is 8 ounces, and the
maximum allowable variation (MAV) is 0.020 ounces.  Also
assume that the standard deviation of the process is 0.05. What
should the optimal process mean be such that:
a. Within ten units sampled, there shall be no weight below the

specified gross weight limit, which is computed as the (label
stated weight) − (maximum allowable variation).

b. The net average weight of ten sample units must be greater than
or equal to the label stated weight. Assume a risk of 0.05 for
both requirements.

6. The cost per ounce of the contents in a soup can is $0.10, and its
sales price is $2.00. The upper and lower limits are set at 16 and
15 ounces, respectively. The cost of reprocessing a can with contents
outside these limits is $0.05. The process has a mean of 15.7 ounces
and a standard deviation of 0.25 ounces. Assume that the distribu-
tion of contents is normal. Compute the expected profit per can
earned by the manufacturer.

7. Consider the model discussed in Section 6.3 and assume the fol-
lowing values for the parameters:

L = 10.00
σ = 0.04
b0 = $5.00
fa = $8.00
fr = $6.00
c0 = 1.00
ca = $0.80
cr = 0.60

Assume also that the process mean is set at 10.05 (not the optimal
value) and find the expected net income per unit.
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7.1 Introduction

After selecting the process and improving it (σ 2 is fixed in this step at , which
now becomes the target variance) and determining the target mean (µ0 is fixed
in this step at µ0), the next important step is setting the process/machine so that
the actual mean µ is as close as possible, if not exactly equal, to the target.
Usually the operator/setter will take one or more readings on the quality
characteristics and adjust the process. This is made difficult because the
observations are subject to inherent variation of the process and measure-
ment error introduced by the gauge and the operator. The discussion in this
chapter is based on the work by Grubbs2 in which he develops an optimum
procedure for setting the process. 

7.2 Formulation of Optimal Setting Procedure

Grubbs considered the setting process:2

1. The operator makes one component, measures the quality charac-
teristic, then compares the measured value with the target value,
and adjusts the process accordingly.

σ 0
2
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2.  After adjustment, the operator makes another item, measures it,
and adjusts the process again, if necessary.

3. These steps are repeated until no changes in setting are indicated
for several consecutive items or when  is suitably small, where
σ is the process standard deviation and n is the number of items
measured.

The following notation is used:

X = quality characteristic.
µ0 = target value of X and of the mean of X.

= variance of X.
Xi = true value of the ith item (measurement of the quality

characteristic of the item made after the ith adjustment).
µi = E(Xi) = mean of Xi.
V = measurement error.
µv = mean of V which is assumed to be 0.

= variance of V.
Vi = measurement error associated with ith item.
d = true deviation of µ1 from µ0 = (µ1 – µ0).
Y = observed value of the quality characteristic. 
Yi = observed value of the ith item = Xi + Vi.
ki = factor used in ith adjustment.

The following assumptions are made by the author:

1. X and V are independent.
2. Preliminary studies have been conducted to estimate the relative

measurements of the items manufactured by the process as a func-
tion of the position of the setting device (the process parameters).

3. After taking the ith measurement (Yi), the setting is adjusted so
that the mean is changed by ki(Yi – µ0), where 0 < ki < 1.0. 

Grubbs expresses the true value of the characteristic X in terms of the mean
of the distribution of X and its mean µx as follows: 

(7.1)

where W is a random variable with a mean = 0 and a variance =  Hence,
the true value of the ith item is

 (7.2)

s n⁄

σx
2

σv
2

X µ W+=

σx
2.

Xi µi Wi+=
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The observed value of the measurement of the ith item, Yi, is

(7.3)

The observed value of the first item is

(7.4)

The difference between Y1 and µ0 is

(7.5)

As an example, let us assume that the target mean µ0 is 1" and the measure-
ment of the first item, Y1, is 1.2". That is, 

Y1 = µ0 + d + W1 + V1 = 1.2"

Then, the difference between Y1 and µ0 = Y1 − µ0 = d + W1 + V1 = 0.2".
 As per the assumption, the operator adjusts the process/machine now such

that the current mean (µ1) is reduced by k1(d + W1 + V1). Now the new mean is

(7.6)

Now the second observation, Y2, is measured. This observed value is

(7.7)

The amount of adjustment now is based on the difference between Y2 and µ0

which is

  (7.8)

Now the operator adjusts the machine such that the current mean µ2 is
reduced by k2(Y2 – µ0), given in Eq. (7.8). That is, the amount of adjustment is
k2(Y2 – µ0) and the new mean is

Yi Xi Vi+ µi Wi Vi+ += =

Y1 µ1 W1 V1+ + µ0 d W1 V1+ + += =

Y1 µ1– d W1 V1+ +=

µ2 µ1 k1 d W1 V1+ +( )–=

µ0 d k1 d W1 V1+ +( )–+=

µ0 d 1 k1–( ) k1 W1 V1+( )–+=

Y2 X2 V2+ µ2 W2 V2+ += =

µ0 d 1 k1–( ) k1 W1 V1+( )– W2 V2+( )+ +=

Y2 µ0– d 1 k1–( ) k1 W1 V1+( )– W2 V2+( )+=

µ3 µ2 k2 Y2 µ0–( )–=

µ2 k2 d 1 k1–( ) k1 W1 V1+( )– W2 V2+( )+{ }–=

µ0 d 1 k1–( ) k1 W1 V1+( )– k2 d 1 k1–( ) k1 W1 V1+( )– W2 V2+( )+{ }–+=

µ0 d 1 k1–( ) 1 k2–( ) k1 W1 V1+( ) 1 k2–( ) k2– W2 V2+( ) (7.9)–+=
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This setting procedure is illustrated in Figure 7.1.
If we proceed in a similar manner, the mean of the (n + 1)st observation (the

reading after the nth adjustment) is

(7.10)

where 
Now the problem is to determine the optimal values of k1, k2, ..., kn such that

the mean after the nth adjustment is equal to µ0 as soon as possible. A proba-
bilistic expression of this requirement results in the following:

(7.11)

and

(7.12)

Now let us examine these requirements.

FIGURE 7.1
Process-setting procedure.

Y2 X1

Y1X2

µ2

µ0

µ3 µ1

Distribution
of X2

Distribution
of X1

d

1st Adjustment = k1*(Y1-µ0)

2nd

Adjustment =
k2*(Y2-µ0)

(Y1-µ0)

(Y2-µ0)

µn+1 µ0 d 1 k1–( ) 1 k2–( )… 1 kn–( )+=

– k1 1 k2–( ) 1 k3–( )… 1 kn–( ) W1 V1+( )
– k2 1 k3–( )… 1 kn–( ) W2 V2+( ) kn Wn Vn+( )–

µ0 d 1 ki–( ) ki 1 kr–( ) Wi Vi+( )
r=i+1

n

∏
i=1

n

∑–
i=1

n

∏+=

∏r=i+1
n 1.0.=

1. E µn+1( ) µ0=

2. Var µn+1( ) is minimized
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CONDITION 1:
Using Eq. (7.10),

 (7.13)

As per the assumptions made earlier, E[Wi] = E[Vi] = 0, for all i. Also, E[µ0] =
µ0. Hence, Eq. (7.13) can be written as:

and as d is not equal to 0,

(7.14)

CONDITION 2: VAR[µn++++1] IS MINIMIZED

(7.15)

Minimizing the right-hand side of Eq. (7.15) is the same as minimizing
 because  and  are constants.

Now the setting problem can be stated as: Find the adjustment fractions, k1,
k2, ..., kn so as to minimize:

subject to

(7.16)

The formulation given in Eq. (7.16) is a simple nonlinear programming prob-
lem. It can be solved using the method of LaGrange multipliers.

E µn+1 ]( µ0=

E µ0 d 1 ki–( ) ki 1 kr–( ) Wi Vi+( )
r = i+1

n

∏
i=1

n

∑–
i=1

n

∏+ µ0=

µ0 d 1 ki–( )
i=1

n

∏+ µ0=

1 ki–( )
i=1

n

∏ 0=

Var µ0 d 1 ki–( ) ki 1 kr–( ) Wi Vi+( )
r=i+1

n

∏
i=1

n

∑–
i=1

n

∏+

ki
2 1 kr–( )2 Var Wi( ) Var Vi( )+[ ]

r=i+1

n

∏
i=1

n

∑=

ki
2 1 kr–( )2 σx

2 σv
2+( ), as Var Wi( )

r=i+1

n

∏
i=1

n

∑ Var Xi( ) sx
2= = =

σx
2 σv

2+( ) ki
2 1 kr–( )2

r=i+1

n

∏
i=1

n

∑=

Σi=1
n ki

2∏r=i+1
n 1 kr–( )2, σx

2 σv
2

Z ki
2 1 kr–( )2

r=i+1

n

∏
i=1

n

∑=

1 ki–( )
i =1

n

∏ 0=
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7.3 Solution Using LaGrange Multiplier

The unconstrained objective function of the formulation in Eq. (7.16) is 

 (7.17)

where λ is the LaGrange multiplier. Now the optimal values of k1, k2, ..., kn and λ
are obtained by finding the partial derivatives  i = 1, 2, ..., n, and

 and setting them equal to 0. First let us rewrite the right-hand side
of Eq. (7.17):

from which

(7.18)

from which

(7.19)

F k1, k2, …, kn, λ( ) ∑ ki
2 1 kr–( )2 λ 1 ki–( )

i=1

n

∏
 
 
 

+
r=i+1

n

∏=

∂F ⋅( ) ∂ki⁄( ),
∂F ⋅( ) ∂l⁄

F k1, k2, …, kn, l( ) ki
2

i=1

n

∑ 1 kr–( )2 l 1 ki–( )
i=1

n

∏+
r=i+1

n

∏=

k1
2 1 k2–( )2 1 k3–( )2 … = 1 kn–( )2

k2
2+ 1 k3–( )2 1 k4–( )2 … 1 kn–( )2

k3
2 1 k4–( )2 1 k5–( )2 + … 1 kn–( )2

kn 1–
2 1 kn–( )2 kn

2 l 1 k1–( ) 1 k2–( )+ ++  … 1 kn–( )
F∂ •( )
k1∂

------------ 2k1 1 k2–( )2… 1 kn–( )2 l 1–( ) 1 k2–( ) … 1 kn–( )+ 0= =

λ 2k1 1 k2–( ) … 1 kn–( )=

∂F ⋅( )
∂k2

------------- k1
2 2 1 k2–( ) 1–( ) 1 k3–( )2… 1 kn–( )2 2k2 1 k3–( )2… 1 kn–( )2 +=

 λ+ 1 k1–( ) 1–( ) 1 k3–( )… 1 kn–( ) 0=

λ 1 k1–( ) k1 k12 1 k2–( )… 1 kn–( )[ ]+ 2k2 1 k3–( )… 1 kn–( )=

λ 1 k1–( ) k1 λ( )+ 2k2 1 k3–( )… 1 kn–( )=

λ 2k2 1 k3–( )… 1 kn–( )=
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By induction from Eqs. (7.18) and (7.19),

 (7.20)

Taking the partial derivative of Eq. (7.17) with respect to λ yields:

 (7.21)

In Eq. (7.21), (1 – ki) can be shown to be equal to 1 – (1 – kr).
Hence, from Eq. (7.21), 

(7.22)

From Eq. (7.20), it can be seen that: 

(7.23)

Now we will find the optimum values of ki, i = 1, 2, 3, ..., n, using Eqs. (7.20)
and (7.23), starting with i = n:

(7.24)

When i = n – 1,

 

(7.25)

λ 2ki 1 kr–( )
r=i+1

n

∏= , i 1, 2, …, n=

∂F ⋅( )
∂λ

------------- 1 ki–( )
i=1

n

∏ 0= =

∏i=1
n Σi=1

n ki∏r=i+1
n

1 ki 1 kr–( )
r=i+1

n

∏
i=1

n

∑– 0=

ki 1 kr–( )
r=i+1

n

∏
i=1

n

∑ 1=

ki 1 kr–( )
r=i+1

n

∏
i=1

n

∑ λ
2
---

i=1

n

∑ nλ
2

------ 1, and= = =

λ 2
n
---=

2ki 1 kr–( )
r=i+1

n

∏ 2kn
2
n
---= =

kn
* 1

n
---=

2ki 1 kr–( )
r=i+1

n

∏ 2kn 1– 1 kn–( ) 2kn−1 1 1
n
---– 

  2
n
---= = =

kn−1
* 1

n 1–
------------=
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By induction from Eqs. (7.24) and (7.25),

 (7.26)

That is,  = 1/3; ....
It should be noted that the length of time required to converge to the target

value µ0 still depends on the variances  and . Now let us find the opti-
mum value of the objective function in the formulation, which is the variance
of µn+1, given in Eq. (7.15), using the optimal values of ki, i = 1, 2, …, n given
in Eq. (7.26):

Hence, the optimal variance of µn+1 is

(7.27)

7.4 Multiple Work Pieces after Each Adjustment

Suppose that m work pieces are produced each time instead of just one piece
and that the mean of these m measurements is used to determine the amount
of setting. This means that after the (i – 1)th adjustment, the observations are
Yi1, Yi2, ...., and Yim. This method is compared with the setting procedure based

ki
* 1

i
--- for i 1, 2, …, n= =

k1
* 1; k2

* 1/2; k3
*= =

σx
2 σv

2

Var mn 1+( ) sx
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∑ 1 kr–( )2

r=i 1+

n

∏=
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2

i=1

n

∑ 1 kr–( )2

r=i 1+

n
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2 1 k2–( )2 … 1 kn–( )2 k2

2+ 1 k3–( )2 … 1 kn–( )2=

k3
2 1 k4–( )2

 + … 1 kn–( )2 … kn
2+ +

1 1 1/2–( )2 1 1/3–( )2 … 1 1/n–( )2 1/2( )2+=
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1 1
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n
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on one observation after each adjustment, assumed until now, in Table 7.1.
Only the key steps are given. It can be seen that the optimal values of the
adjustment fractions are the same as before.

7.5 Recent Developments

Trietsch3 states that a Bayesian formulation could yield a complete solution
to the adjustment problem solved by Grubbs. Recently del Castillo and Pan1

have proposed a process-setting procedure using a Bayesian approach based
on a Kalman filter estimate of d, which is the initial difference between µ1 and
the target value µ0. 

TABLE 7.1 

Multiple Measurements After Each Adjustment

One Reading (Yi)
m Readings (Yi1, Yi2, …, Yim):

Y1 = µ0 + d +W1 + V1

Amount of first adjustment

Y i
Y ij

m
------

j=1

m

∑=

Yij µ0 d+( ) W1 j V1 j ;+ +=

Y1 µ0 d+( ) W1j V1 j+( )
j=1

m

∑=

k1 Y1 µ0–( )=

k1 d W1 V1+ +( )=
k1 Y1 µ0–( ) k1 d 1

m
---- W1 j V1 j+( )

j=1

m

∑+=

µ2 µ0 d 1 k1–( )   k1– W1 V1+( )+=
µ2 µ0 d 1 k1–( ) k1

W1 j V1 j+
m

-----------------------
j=1

m

∑–+=

µn+1 µ0 d 1 ki–( )
i=1

n

∏+=

– ki 1 kr–( ) Wi Vi+( )
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n

∏
i=1

n

∑
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∏+=
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m

--------------------------
j=1
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∑
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n

∏
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n
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n
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∏+=
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∏
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2 σv
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©2001 CRC Press LLC



7.6 References

1. del Castillo, E. and Pan, R., A Unifying View of Some Process Adjustment
Methods, working paper, Department of Industrial and Manufacturing Engi-
neering, The Pennsylvania State University, University Park, 2000.

2. Grubbs, F.E., An optimum procedure for setting machines or adjusting processes,
Ind. Qual. Control, July, 1954, reprinted in J. Qual. Technol., 15, 186–189, 1983.

3. Trietsch, D., The harmonic rule for process setup adjustment with quadratic
loss, J. Qual. Technol., 30, 75–84, 1998.

7.7 Problems

1. Consider the paper by Grubbs on process setting.2 Make the following
assumptions which are different from the assumptions made by
Grubbs. Assume that after each setting, the operator collects one
piece from the process/machine and takes m measurements of the
characteristics of the same piece. The amount of setting is based
on the difference between the mean of these m readings and the
target value. Derive expressions for the expected value and variance
of µn+1. Obtain the optimal setting policy (that is, find the optimal
values of ki), without going through the steps of optimization. What
is the variance of µn+1 if the optimal setting policy is used?

2. The operator takes only one measurement as assumed by Grubbs.2

But, the mean of the measurement error V is µv, which is not equal
to 0 and is known. Derive expressions for the expected value and
the variance of µn+1. Describe how you would modify the setting
procedure developed by Grubbs to compensate for the fact that the
mean of V is not 0 (that is, the instrument has a known bias).

3. Consider the paper on process adjustments by Grubbs.2 The oper-
ator takes a sample batch of m individual pieces before each adjust-
ment (m observations) and uses the sample mean of these m
observations to make the adjustment. Make all assumptions made
by Grubbs which means that the optimal adjustment policy as
obtained by Grubbs can be used. In addition, make the following
assumptions:
The sampling cost consists of a fixed cost of Cf per batch and a

variable cost of Cv per observation.
The operator collects only n sample batches (that is, makes only n

adjustments) before starting the regular production run. The penalty
©2001 CRC Press LLC



cost for starting the regular production run after n adjustments is
(variance of µn+1).
Assume that Cf , Cv , and Ca are given.

where  and  are the variances of the process and the measure-
ment error, respectively. 
a. Derive an expression for the total cost before starting regular

production (after n adjustments), consisting of the total sampling
cost and the penalty cost (given above), assuming that only n
adjustments are made.

b. Consider m as a continuous decision variable and derive an
expression for the optimal value of m that minimizes the total
cost derived in a, above.

Ca
*

Var µn+1( )
σx

2 σv
2+( )

mn
----------------------=

σx
2 σv

2
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8.1 Introduction

Before starting manufacture of an entire lot or batch of components (or prod-
ucts), two conditions must be satisfied to reduce the proportion of defectives
and external failure costs:

1. The variance  of the distribution of the characteristic should be
minimum, which is achieved by selecting a suitable process and by
eliminating sources of variation (using design of experiments, etc.).

2. The mean (µ) of the distribution of the characteristic should be as
close as possible, if not equal, to the target value, which is achieved
by process setting, including selection of the levels of process param-
eters (using design of experiments, etc.).

Let the values of the standard deviation and the mean achieved before
starting regular manufacture be σ0 and µ0, respectively. These are called
“in-control” values. It is important that the mean and standard deviation of
the distribution of the quality characteristic remain equal to µ0 and σ0, respec-
tively, throughout the entire duration of manufacture.

To do so requires that the process be monitored continuously during man-
ufacture (to ensure that µ = µ0 and σ = σ0). Continuous monitoring may not
be feasible in all cases. In such situations, monitoring of the process at regular
intervals must be done. This implies that sample observations must be col-
lected from the process at regular intervals and inferences made concerning
µ and σ. Statistically speaking, this means testing of hypotheses. There are
two sets of hypotheses that need to be tested:

1. H0: µ = µ0. 
H1: µ ≠ µ0. 

2. H0: σ = σ0.
H1: σ ≠ σ0.

σ2( )
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If both null hypotheses are true (µ = µ0 and σ = σ0), then the process is said
to be “in control.” If either one or both are not true (false) (µ ≠ µ0, or σ ≠ σ0 or
µ ≠ µ0 and σ ≠ σ0), then the process is said to be “out-of-control.”

8.2 Preliminaries

8.2.1 Steps in Hypothesis Testing

1. Set up hypotheses (we’ll consider only µ now):

H0: µ = µ0; H1: µ ≠ µ0

2. Select an unbiased statistic (with the minimum variance, if possible);
(  for µ).

3. Specify probability of Type I error, which is

P [Rejecting H0, when it is true] = α

4. Using α and the distribution of , set up the acceptance regions for :
Accept H0, if µ0 − Zα/2 × σ0/  <  < µ0 + Zα/2 × σ0/ .
Reject H0, if  < µ0 − Zα/2 × σ0/  or  > µ0 + Zα/2 × σ0/ .

In process control, when H0 is accepted, the process is assumed to be
“in-control” and is allowed to run. If H0 is rejected, the process is assumed
to be “out-of-control” and stopped. Then the process must be examined to
identify the “assignable causes” or “special causes” that might have caused
the “out-of-control” state of the process. Once the assignable causes are
located, they must be removed and then only the process is allowed to run.
Since this procedure has to be repeated every h time units (h = 5, 10, 20, or
30 minutes), it is convenient to represent this procedure by a chart. This is a
two-dimensional graph with the horizontal axis representing the time or
order of sample batch collection and the vertical axis representing the test sta-
tistic values,  in this case. This chart has three horizontal lines:

Top line: The upper limit of the acceptance region,

µ0 + Zα/2 × σ0/ (8.1)

which is the upper control  limit (UCL)
Bottom line: The lower limit of the acceptance region,

µ0 − Zα/2 × σ0/ (8.2)

which is the lower control limit (LCL)

Center Line: In-control value of the mean, µ0

X

X X
n X n

X n X n

X

n

n
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The chart is called an  chart. Dr. Walter Shewhart from Bell Labs intro-
duced this and other control charts in 1923. He recommended that α be set
equal to 0.0026. As α/2 = 0.0013 and Zα/2 = 3.00, the control limits become
LCL =  µ0 – 3σ0/  and UCL = µ0 + 3σ0/ . Once the chart is set up, sample
batches are collected every h time units, and  values are computed and
plotted on the chart. The process is allowed to run if the plotted  values fall
within the control limits. Whenever an  value falls outside the control limits
(below the lower control limit or above the upper control limit), the process
is stopped and diagnosed for assignable causes.

8.2.2 Probability of Type II Error (ββββ)

H0: µ = µ0; H1: µ ≠ µ0.

(8.3)

Here, H1 simply states that µ ≠ µ0, which is not sufficient to compute
P[Type II error]. We need a specific value for µ that is not equal to µ0. Let this
be equal to µ1 (µ1 ≠ µ0):

As the probability distribution of  when H1 is true (process is out of control)
is approximately normal with a mean = µ1 and variance = ,

(8.4)
The probabilities of Type I and II error are illustrated in Figure 8.1.

Because of β, the process is run in its out-of-control state for some time before
an  falls outside the control limits. Defective parts will be manufactured dur-
ing this interval, because µ is either <µ0 or  >µ0. An important “measure” of
interest in such cases is the average length of time during which the process
is run, after it has gone out of control (µ ≠ µ0). This is called the average run
length (ARL). 

If α is small (0.0026 usually), β could be large, resulting in a large ARL and
hence a large expected cost of rejection. Hence, other stopping rules besides
an  falling outside the control limits are needed to stop the process.

X

n n
X

X
X

P Type II error[ ] P Accept H0/it is not true or H1 is true[ ]=

P Concluding that the process is in control when[=

it is out of control ]

P µ0 Zα 2⁄ σ0 n X µ0 Zα 2⁄ σ0/ n µ µ0≠×+< <⁄×–[ ]=

P Type II error[ ] P µ0 Zα/2 σ0 n⁄ X µ0 Zα/2 σ0 n µ µ1=⁄×+< <×–[ ]=

X
σ0

2 n⁄

P Type II error[ ] P µ0 Zα 2⁄ σ0 n⁄ µ1–×–( ) σ0 n Z<⁄⁄[=

µ0 Zα 2⁄ σ0 n⁄ µ1 ) σ0 n⁄⁄–×+ ](<

P µ0 µ1–( ) n σ0 Zα 2⁄ Z µ0 µ1–( ) n σ0 Zα 2⁄+⁄< <–⁄[ ]=

X

X

©2001 CRC Press LLC



Some rules recommended in QS-9000 are given below:

1. Seven points in a row on one side of the center line
2. Seven points in a row consistently going up or coming down
3. Substantially more than 2/3 of the points close to the center line
4. Substantially fewer than 2/3 of the points close to the center line

FIGURE 8.1
Probabilities of Type I and II errors.

Reject H0 Reject H0Accept H0

Distribution
of X−

Control Limit

µ0 µ0 +Ζα/2  ˆσ0/ n
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µ0 −Ζα/2 σ0/ˆ n

α/2
α/2
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8.3 Variable Control Charts

Variable control charts are used when quality is measured as variables
(length, weight, tensile strength, etc.). The main purpose of the variable con-
trol charts is to monitor the process mean and the standard deviation.

8.3.1 Monitoring Process Mean

Table 8.1 contains sample observations that will be used to illustrate calcula-
tion of control limits. The data set has 20 batches, each batch consisting of five
observations (n = 5). The control limits are

LCL = µ0 − 3σ0/ (8.5)
UCL = µ0 + 3σ0/

When both µ0 and σ0 are known (specified and not estimated before running
the process for regular production),

LCL = µ0 − Aσ0 (8.6)
UCL = µ0 + Aσ0

TABLE 8.1

Data for , R, and s Chartsa 

Batch #
(i) Obs. 1 Obs. 2 Obs. 3 Obs. 4 Obs. 5 R s

1 4.5 4.6 4.5 4.4 4.4 4.48 0.2 0.084
2 4.6 4.5 4.4 4.3 4.1 4.38 0.5 0.192
3 4.6 4.1 4.4 4.4 4.1 4.32 0.5 0.217
4 4.4 4.3 4.4 4.2 4.3 4.32 0.2 0.084
5 4.3 4.3 4.4 4.2 4.3 4.30 0.2 0.071
6 4.6 4.6 4.2 4.5 4.5 4.46 0.4 0.167
7 4.1 4.3 4.6 4.5 4.2 4.34 0.5 0.207
8 4.5 4.5 4.4 4.6 4.4 4.48 0.2 0.084
9 4.4 4.2 4.6 4.6 4.2 4.40 0.4 0.200

10 4.2 4.2 4.2 4.5 4.2 4.26 0.3 0.134
11 4.3 4.2 4.3 4.4 4.2 4.28 0.2 0.084
12 4.4 4.4 4.4 4.4 4.1 4.34 0.3 0.134
13 4.3 4.2 4.4 4.6 4.6 4.42 0.4 0.179
14 4.2 4.4 4.4 4.1 4.4 4.30 0.3 0.141
15 4.2 4.3 4.1 4.5 4.6 4.34 0.5 0.207
16 4.6 4.4 4.3 4.5 4.1 4.38 0.5 0.192
17 4.6 4.6 4.6 4.2 4.5 4.50 0.4 0.173
18 4.4 4.6 4.3 4.1 4.3 4.34 0.5 0.182
19 4.3 4.6 4.2 4.2 4.1 4.28 0.5 0.192
20 4.2 4.5 4.1 4.4 4.4 4.32 0.4 0.164
Average 4.36 0.37 0.15
a µ0 = 4.35; σ0 = 0.1708.

n

n

X

X
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where 

(8.7)

Values of A are listed in Table A.4 in the Appendix. 
When µ0  and σ0 are estimated, µ0  is estimated by  and σ0 is estimated by

R/d2 or s/c4, where R is the sample range and s is the sample standard deviation.

8.3.1.1 µµµµ0 Estimated by  and σσσσ0 Estimated by R/d2

Let  be the grand average of more than one  and  be the grand average
of more than one R. Then, µ0 is estimated by  and σ0 is estimate by .
In Table 8.1,  is the grand average of 20  values (each  is from a batch of
5 observations) and  is the average of 20 range (R) values (each R is from a
batch of 5 observations).  = 4.36,  = 0.37, and n = 5.

(8.8)

(8.9)

(8.10)

Values of A2 are tabulated in Table A.4.

Example 8.1
 = 4.36,  = 0.37, n = 5, and A2 from Table A.4 = 0.5768.

LCL = 4.36 − (0.5768 × 0.37) = 4.15
UCL = 4.36 + (0.5768 × 0.37) = 4.57
CL = 4.36

The 20  values are plotted on the  chart in Figure 8.2.

8.3.1.2 µµµµ0 Estimated by  and σσσσ0 Estimated by s/c4

Let  be the grand average of more than one s (sample standard deviation).
Then σ0 is estimated by :

(8.11)

where 

(8.12)                                                                                                   

(8.13)

A 3
n

-------=

X

X

X X R
X R d2⁄

X X X
R

X R

LCL µ0 3σ0 n⁄– X 3R n⁄–= =

 X A2R, where A2– 3 d2 n( )⁄= =

UCL X A2R+=

CL X=

X R

X X

X

s
s c4⁄

LCL X 3 s c4⁄( ) n⁄– X 3s( ) c4 n( )⁄– X A3s–= = =

A3 3 c4 n( )⁄=

UCL X A3s+=
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Values of A3 are tabulated in Table A.4 in the Appendix.

Example 8.2
 = 4.36,  = 0.154, n = 5, and A3 from Table A.4 = 1.4273.

LCL = 4.36 − (1.4273 × 0.154) = 4.14
UCL = 4.36 + (1.4273 × 0.154) = 4.58
CL = 4.36

8.3.2 Monitoring Process Standard Deviation

The hypotheses tested are H0:  H1:  The general formula for
any control chart is

(8.14)

Both the expected value and the standard deviation of the test statistic are
obtained assuming that the process is in control. Also, it is assumed that the test
statistic is approximately normally distributed. There are two test statistics

FIGURE 8.2
 chart.
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(unbiased estimators) for testing these hypotheses: R/d2 and s/c4. Both are
assumed to be approximately normally distributed.

8.3.2.1 Using R/d2 as the Test Statistic

(8.15)

The control limits are

σ0 ± Zα/2 × (d3/d2) × σ0 = σ0 [1 ± 3 × (d3/d2)]   (8.16)

if α = 0.0026. The center line is located at σ0. The values of the constant d3 in
Eqs. (8.15) and (8.16) are given in Table A.4 in the Appendix.

Values of R/d2 are plotted on this control chart. Maintaining this chart can
be simplified by using R as the test statistic instead of R/d2. The control limits
when values of R are plotted are σ0 (d2 ± 3 × d3) and the center line is at σ0 × d2.

LCL = σ0 (d2 − 3 × d3) = D1σ0 (8.17)

and

UCL = σ0 (d2 + 3 × d3) = D2σ0 (8.18)

where 

D1 = (d2 − 3 × d3) (8.19)

and

D2 = (d2 + 3 × d3)   (8.20) 

The values of D1 and D2 are given in Table A.4.
As D1 = (d2 − 3 × d3) is negative when n ≤ 6, D1 is set to 0, as R is positive.

The limits and the center line require knowledge of the in-control standard
deviation, σ0, which may be difficult in many real-life situations. In such
cases, σ0 has to be estimated. The unbiased estimator of σ0 is R/d2 . Let us
replace σ0 in the above formulas for the control limits and the center line by
R/d2.

The control limits are 

(8.21)

E R d2⁄[ ] σ0; standard deviation R d2⁄ d3 d2⁄( ) σ0×= =

LCL σ0 d2 3 d3×–( ) R
d2
----- d2 3 d3×–( ) R 1 3 d3 d2⁄×–( )= = =

 D3 R×=
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where 

D3 = 1 − 3 × d3/d2 (8.22)

(8.23)

where 

D4 = 1 + 3 × d3/d2 (8.24)

The values of D3 and D4 can be found in Table A.4 in the Appendix.
As D3 = (1 − 3 × d3/d2) is negative when n ≤ 6, D3 set equal to 0. The center

line is at . This is called an R chart, because the values of the sample range,
R, are plotted on this chart.

Example 8.3
From Table 8.1,   = 0.37  and  n = 5. The control limits are

D3 = 0
D4 = 2.1144
LCL = 0
UCL = 0.37 × 2.1144 = 0.78

The center line is at  = 0.37.

8.3.2.2 Using s/c4 as the Test Statistic

(8.25)

The control limits are 

(8.26) 

The center line is set at σ0. Values of s/c4 are plotted on this chart. Maintain-
ing this chart can be simplified by using s as the test statistic instead of s/c4.
The control limits of a chart on which the values of s are plotted are c4 ×
σ0  and the center line is at σ0c4.

              (8.27)

UCL σ0 d2 3 d3×+( ) R
d2
----- d2 3 d3×+( ) R 1 3 d3 d2⁄×+( )= = =

 D4 R×=

R

R

R

E s c4⁄[ ] σ0;  standard deviation s c4⁄
1 c4

2–
c4

-----------------  σ0= =

σ0 3
1 c4

2–
c4

-----------------  σ0×± σ0 1 3±
1 c4

2–
c4

-----------------×=

1 3 1 c4
2– c4⁄×±[ ] σ0 c4 3 1 c4

2–×±[ ]=

LCL σ0 c4 3 1 c4
2–×–[ ] B5σ0= =
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and 

(8.28)

where

(8.29)

and

(8.30)

The values of B5 and B6 are given in Table A.4.
The limits and the center line require knowledge of the in-control standard

deviation, σ0, which may be difficult in many real-life situations. In such
cases, σ0 has to be estimated. The unbiased estimator of σ0 is . Let us
replace σ0 in the above formulas for the control limits and the center line by

.
The control limits are 

(8.31)

where

(8.32)

(8.33)

UCL σ0 c4 3 1 c4
2–×+[ ] B6σ0= =

B5 c4 3 1 c4
2–×–=

B6 c4 3 1 c4
2–×+=

s c4⁄

s c4⁄

LCL σ0 c4 3 1 c4
2–×–[ ] s

c4
----  c4 3 1 c4

2–×–[ ]= =

 s 1 3
1 c4

2–
c4

-----------------×–=

 B3 s×=

B3 1 3
1 c4

2–
c4

-----------------×–=

UCL σ0 c4 3 1 c4
2–×+[ ] s c4⁄ c4 3 1 c4

2–×+[ ]= =

 s 1 3
1 c4

2–
c4

-----------------×+=

 B4 s×=
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where

(8.34)

The values of B3 and B4 can be found in Table A.4.

As  is negative when n ≤ 5, it is set equal to 0.
This is called an s chart, because the values of the sample standard deviation,
s, are plotted on this chart.

Example 8.4
Please refer to Table 8.1. From the table,  = 0.15 and n = 5. The control limits
are 

B3 = 0
B4 = 2.0889
LCL = 0
UCL = 2.0889 × 0.154 = 0.322

The center line is at  = 0.154.

8.3.2.3 Summary

While monitoring the mean and standard deviation of a process, two control
charts are required:

1.  chart (for testing µ) and R chart (for testing σ)
2.  chart (for testing µ) and s chart (for testing σ)

8.3.2.4 Subgroup or Batch Size and Frequency

Based on the recommendation of QS-9000, the sample batches should be
chosen in such a manner that the opportunities for variation among the units
within a batch are small. The recommended subgroup size (n) for an initial
study is 4 to 5. It should be kept in mind that the components within a sub-
group are produced under very similar conditions and that no systematic
variation is present among the units within the same subgroup. The variation
present among the units of a subgroup should be due to the natural inherent
variation present in the process only. This is called the common cause variation.
The control charts compare this variation with the variation between sub-
groups, which is due to the ‘’special” or “assignable” causes. As the purpose
of the charts is to detect changes in the process over time, batches should be

B4 1 3
1 c4

2–
c4

-----------------×+=

B3 1 3 1 c4
2–( ) c4⁄×–( )=

s

s

X

X
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collected often enough to do so. The interval between successive batches
could be shorter initially. As the process becomes stable, this interval could
be increased. For estimation of the in-control mean and standard deviation,
it is recommended that 25 or more subgroups containing about 100 or more
components are collected. In the Design of Control Charts section (8.5), the
sample size (n) and the interval between successive batches (h) will be con-
sidered as decision variables to minimize the total expected cost per unit
time.

8.3.3 Some Special Charts

There are situations where it may be difficult to take a sample of size greater
than one or when only one measurement is meaningful each time. Some
examples of these situations are

1. The production rate is very slow or the batch size or the lot size is
very small.

2. In continuous processes (such as chemical processes), measure-
ments on some quality characteristics, such as the viscosity of a
paint or the thickness of insulation on a cable, will vary only a little
between successive observations.

In these situations, it is not possible to use the  and R or s charts we studied
earlier. The following are some of the charts that can be used in such cases.

8.3.3.1 Individual Measurement Chart or X Chart or Run Chart
and Moving Range Chart

Both the in-control mean and in-control standard deviation are estimated.

Example 8.5
The ten observations given in Table 8.2 are the densities of a compound col-
lected at intervals of 15 minutes each from a chemical process. These obser-
vations will be used to compute the limits of the X chart and the moving
range chart.

8.3.3.1.1 X Chart

The control limits of an  chart are  (assuming α = 0.0026). In the
X chart, individual measurements are plotted, hence n = 1. So the control limits
of an X chart are µ0 ± 3σ0. As µ0 is estimated by  and σ0 by , the limits
become:

(8.35)

X

X µ0 3σ0± n⁄

X R d2⁄

X 3 R d2⁄( )±
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As the moving range is calculated from two successive observations most of
the time, and d2 = 1.128 when n = 2, the control limits are

(8.36)

In the example,  = 10.64 and  = 0.398, hence the limits are (9.58, 11.70).
None of the ten X values are outside these limits; therefore, these can be used
as the  limits of the X chart.

8.3.3.1.2 Moving Range Chart

The control limits of the R chart are  (assuming α = 0.0026). As
the moving range is computed from two successive observations most of the
time, D3 and D4  are 0 and 3.2672, respectively. Hence, the limits of the moving
range chart are

(8.37)

In our example, the limits are (0, 1.30). As none of the nine range values is out-
side these limits, these limits can be used as the limits of the moving average
chart.

8.3.3.2 Pre-Control Chart

Individual measurements are plotted on this chart. It is suitable for situations
where the batch size is small. The control limits are based on the specification
limits. As an example, let the specification limits for a quality characteristic
be 0.5 ± 0.002 (LSL = 0.498; USL = 0.502).  The center line of the chart is located
at the nominal size (0.500). Horizontal lines are drawn at the upper specifica-
tion limit (0.502) and the lower specification limit (0.498). In addition, hori-
zontal lines are also drawn at nominal size ± 1/4 × (USL – LSL).

TABLE 8.2

Data for X Chart and Moving Range Chart

Observation Number Observation Moving Range

1 10.42 —
2 10.89 0.47
3 9.86 1.03
4 9.97 0.11
5 10.52 0.55
6 10.21 0.31
7 10.99 0.78
8 11.23 0.24
9 11.21 0.02

10 11.14 0.07
Average 10.64 0.398

X 2.66R±

X R

D3R and D4R

0,  3.2672R( )
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In our example, these lines are at 0.5 – 1/4 × (0.502 – 0.498) = 0.499 and
0.5 + 1/4 × (0.502 – 0.498) = 0.501. The regions above the USL and below the
LSL are called the red zone; the interval between  (nominal size – 1/4 × total
tolerance) and (nominal size + 1/4 × total tolerance) is called the green zone;
and the regions between the red and green zones are called the yellow zone.

The following rules are used while setting up the process:

1. Collect components and measure and plot the individual measure-
ments on the chart until five consecutive values fall in the green
zone.

2. If a value falls in the yellow zone, restart the count to obtain five
consecutive pieces in the green zone. Do not adjust the process.

3. If two consecutive values fall in the yellow zone or one value falls
in the red zone, adjust the process.

4. When five consecutive values fall in the green zone, approve the
setup (the process is in-control) and start regular manufacture.

During regular manufacture, sample two consecutive components every h
(say, 20) minutes and follow these rules:

1. If the first value falls in the green zone, do not plot the second
value; continue the process.

2. If the first value falls in the red zone, stop the process and inves-
tigate.

3. If the first value falls in the yellow zone, then plot the second value.
If it falls in the green zone, continue the process; otherwise, stop
the process and investigate.

This chart is simple to maintain, which is very important. One main disad-
vantage is that the information presented by the chart regarding the variabil-
ity of the process is incomplete.

8.3.3.3 D-NOM Charts

In these charts, the deviations of the characteristics from their respective
nominal values are used as the observations. The calculations of the control
limits are done in the same manner as in the regular  and R charts.

Example 8.6
Let us assume that two types of shafts, A and B, are produced on a machine.
The nominal values of the quality characteristics of A and B are 30.00 and
20.00, respectively. Table 8.3 contains three sample batches of A and five
batches of B. The sample size is three for all the batches.

X
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of 
 Its 
lue

Deviation of 
Obs. 3 from Its 
Nominal Value

(x3)

Test 
Statistic 

( )
Test 

Statistic (R)

2 1.0 2
1  0 2
2 –0.33 4
1 0.67 3

–1 0.33 2
–2 0.33 4
–2 –1.00 2
0 –0.33 1

x

TABLE 8.3

Data for D-NOM Chart

Batch
#

Part
Type

Obs.
1

Obs.
2

Obs.
3

Deviation of 
Obs. 1 from Its 
Nominal Value

(x1)

Deviation 
Obs. 2 from
Nominal Va

(x2)

1 A 30 31 32 0 1
2 A 29 30 31 –1 0
3 A 28 29 32 –2 –1
4 B 20 22 21 0 2
5 B 20 22 19 0 2
6 B 22 21 18 2 1
7 B 20 19 18 0 –1
8 B 19 20 20 –1 0
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The control limits are 

1.  chart
LCL:  − A2 (n = 3)  = 0.084 − 1.0231 × 2.5 = −2.47
UCL:  + A2 (n = 3)  = 0.084 + 1.0231 × 2.5 = 2.64
CL: 0.084

2. R chart
LCL: D3  = 0
UCL: D4  = 2.5743 × 2.5 = 6.438
CL:  = 2.5

The assumptions are 

1. Process standard deviation is the same for all parts.
2. Sample size is constant.

8.3.3.4 Standardized  and R Charts

These are used, if the assumption that the standard deviation is the same
cannot be satisfied. For the part type j test statistic, let X0j be the target value
for part type j and   be the average range of part type j. Then,

(8.38)

where  is  equal to  and n is the equal sample size.
The control limits are

LCL  = −A2

UCL = +A2 
CL = 0.0

The R chart test statistic  = R/ , and

LCL = D3

UCL = D4

CL = 1.0

Example 8.7
The test statistics are computed using the same data given in Table 8.3. The
results are given in Table 8.4. For the  chart, 

LCL = −A2 (n = 3) = −1.023
UCL = A2 (n = 3) = 1.023
CL = 0.0

X

X R

X R

R

R

R

X

Rj

X chart test statistic Xj X0 j–( ) Rj⁄=

Xj X0 j–( ) �i=1
n Xij X0 j–( ) n⁄

Rj

X
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For the R chart,

LCL = D3 = 0
UCL = D4 (n = 3) = 2.575
CL = 1.00

There must be some logic for pooling parts. The target value X0j and the aver-
age range can be determined from past data.

8.3.3.5 Exponentially Weighted  Moving-Average (EWMA)  Control 
Chart

This chart is mainly used with individual observations; it was introduced by
Roberts.9 Let us assume that i observations have been collected from the pro-
cess until now. The test statistic associated with the ith observation, xi, is the
exponentially weighted moving average associated with the ith observation: 

zi = λxi + (1 − λ)Zi−1  (8.39)

where

Zi−1 = λxi−1 + (1 − λ)Zi−2

Zi−2 = λxi−2 + (1 − λ)Zi−3 

and so on where 0 < λ ≤ 1.
When i = 1,

z1 = λx1 + (1 − λ)z0    

TABLE 8.4

Data for the Standardized  and R Charts

Batch 
#

Part 
Type

Obs. 
1

Obs. 
2

Obs. 
3 R

Chart Test 
Statistic

R Chart Test 
Statistic

1 A 0 1 2 1.00 2 1/2.67 = 0.375 2/2.67 = 0.75
2 A –1 0 1 0.00 2 0 2/2.67 = 0.75
3 A –2 –1 2 –0.33 4 –0.124 1.50

8/3 = 2.67
4 B –1 2 1 0.67 2 0.67/2.2 = 0.305 2/2.2 = 0.909
5 B 0 2 –1 0.33 2 0.15 0.909
6 B 2 1 –2 0.33 4 0.15 1.818
7 B 0 –1 –2 –1.00 2 –0.455 0.909
8 B –1 0 0 –0.33 1 −0.15 0.455

11/5 = 2.2

X

x

x

Rj
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where z0 = µ0 (in-control mean or an estimate of the in-control mean).
Now, zi can be written as:

(8.40)

It can be seen from the expression of zi that the weight given to the jth obser-
vation, xj, is

wj = λ(1 − λ)i−j (8.41)

Since 1 − λ ≤ 1, wj = λ(1 − λ)i−j increases as j  increases. That is, the weight
assigned to the most recent observation is larger than the weights assigned to
the previous observations.

Example 8.8
Let λ = 0.8, i = 5, and µ0 = 1.0. Then, the weights are w1 = 0.6(1 − 0.6)5−1 =
0.01536; w2 = 0.6(1 − 0.6)5−2 = 0.0384; w3 = 0.6(1 − 0.6)5−3 = 0.096; w4 = 0.6(1 −
0.6)5−4 = 0.240; and w5 = 0.6(0.4)5–5 = 0.6. Also, z5 = 0.6x5 + 0.24x4 + 0.096x3 +
0.0384x2 + 0.01536x1. The test statistics if x1 = 0.98, x2 = 0.97, x3 = 1.00, x4 = 1.02,
and x5 = 1.03 (and µ0 = 1.0) are given in Table 8.5.

The control limits are 

(8.42)

(8.43)

and CL = µ0.
In the above expressions for LCL and UCL, σ0 is the in-control standard

deviation, λ is the parameter used in computing the test statistic, and L is the

zi λxi 1 λ–( ) λxi−1 1 λ–( )Zi−2+[ ]+=

 λxi λ 1 λ–( )xi−1 1 λ–( )2Zi−2++=

 λxi λ 1 λ–( )xi−1 1 λ–( )2+ λxi−2 1 λ–( )Zi−3+[ ]+=

 λxi λ 1 λ–( )xi−1 λ 1 λ–( )2+ xi−2 1 λ–( )3Zi−3++=

 λxi λ 1 λ–( )xi−1 λ 1 λ–( )2+ xi−2 λ 1 λ–( )3xi−3++=

… λ 1 λ–( )i− jx j … λ 1 λ–( )i−1x1 1 λ–( )iZ0+ ++ +

 1 λ–( )iZ0 λ 1 λ–( )i−1x1 λ 1 λ–( )i−2x2 … λ 1 l–( )i j– xj+ + + +=

… λ 1 λ–( )2xi−2 λ 1 λ–( )xi−1 λxi+++ +

 1 λ–( )iZ0 w1x1 w2x2 … wjxj … wi−1xi−1 wixi++ + + + + +=

LCL µ0 Lσ λ
2 λ–( )

-----------------  1 1 λ–( )2i–[ ]–=

UCL µ0 Lσ λ
2 λ–( )

-----------------  1 1 λ–( )2i–[ ]+=
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width of the control limits  (which is Zα/2). Table 8.6 contains the control limits
for the data in Example 8.8.

The parameters λ and L are selected to yield a specified average run length
(ARL), which is the average length of time during which the process is run in
its out-of-control state before it is stopped. Lucas and Saccucci5 provide
guidelines for selecting λ and L. In general, values of λ in the interval 0.05 ≤
λ ≤ 0.25  and L = 3 work well in practice.7 Smaller values of λ should be used
to detect smaller shifts. 

8.4 Attribute Control Charts

In cases where quality is measured as attributes (number of defects in a com-
ponent or a product or a batch of components or products, number or pro-
portion of defectives in a batch, etc.), attribute control charts are used.

8.4.1 Monitoring Proportion of Defectives in a Lot 

The proportion of defectives in a lot is denoted by p. The hypotheses tested
are H0: p = p0; H1: p ≠ p0 (p0 is some target value which should be  as small as
possible).

TABLE 8.5 

Test Statistics for the EWMA Chart

Obs. # 
(i)

Obs. 
(xi )

Test Statistic
zi = λxi + (1 – λ)zi−−−−1

1 0.98 z1 = 0.6 × 0.98 + (1 − 0.6) × 1.0 = 0.988
2 0.97 z2 = 0.6 × 0.97 + (1 − 0.6) × 0.988 = 0.977
3 1.00 z3 = 0.6 × 1.00 + (1 − 0.6) × 0.977 = 0.991
4 1.02 z4 = 0.6 × 1.02 + (1 − 0.6) × 0.991 = 1.008
5 1.03 z5 = 0.6 × 1.03 + (0.4) × 1.008 = 1.021

TABLE 8.6

Control Limits for EWMA Chart

Obs. #
(i)

Observation
(xi)

Test
Statistic

(zi) LCL UCL

1 0.98 0.988

2 0.97 0.977 0.974 1.026
3 1.00 0.991 0.973 1.027
4 1.02 1.008 0.973 1.027
5 1.03 1.021 0.973 1.027

1 3.054 0.0133×–

0.6/ 2 0.6–( ) 1 1 0.6–( )2–[ ]{ }×
0.976=

1 3.054 0.0133×+

0.6/ 2 0.6–( ) 1 1 0.6–( )2–[ ]{ }×
1.024=
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The test statistic is the sample proportion of defectives  or  = x/n, where
n = sample batch size and  x = number of defectives in the sample batch.

The control limit general formula is E(T.S.) ± Zα/2 S.D.(T.S.):

(8.44)

Hence, the control limits are 

(8.45)

(8.46)

The center line is at p0. If p0 cannot be specified, it must be estimated from the
data. Let us assume that m sample batches, each of size n, are collected and
that the total number of defectives in these m sample batches is d. Then the
estimate of the proportion of defectives per sample batch (of size n) is  =
d/(m × n), and .

Then the control limits are

(8.47)

The center line is at , and this is called a  p chart.

Example 8.9
Let us assume that the readings in Table 8.7 are the number of defective items
in 18 sample batches, each containing a total of 50 items  (n = 50). The total
number of defectives in the 18 sample batches collected is 229. As each
sample batch has 50 items, the average fraction of defectives in these 18 sam-
ple batches is  = 229/(18 × 50) = 0.254, and the limits using this as the esti-
mate of  p0 are

LCL = 0.254 − 3 /50 = 0.069
UCL = 0.254 + 3 /50 = 0.439

The center line is located at 0.254.
In this example, all the  values are within the control limits computed.

Hence, these limits can be used for monitoring p. If one or more  values
falls outside the limits, then these values have to be removed and a new  is

p p̂

E p( ) p0; S.D. p( )
p0 1 p0–( )

n
------------------------= =

p0 Zα 2⁄
p0 1 p0–( )

n
------------------------±

 p0 3
p0 1 p0–( )

n
------------------------, if α± 0.0026= =

p
p̂0 p=

p 3
p 1 p–( )

n
--------------------±

p

p

0.254 1 0.254–( )
0.254 1 0.254–( )

p
p

p
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computed. This procedure has to be repeated until all the  values used in
the estimation of  are within the control limits.

8.4.2 Monitoring Number of Defectives in a Lot 

The number of defectives in a lot is denoted by np. The hypotheses tested are
H0: mean number of defectives = np0; H1: mean number of defectives ≠ np0.

The test statistic used is the number of defectives (x) in a sample batch of
size n, which is denoted as np. The limits of this chart are obtained by multi-
plying the control limits of the p chart by n:

(8.48)

In Eq. (8.48), p0 can be replaced by its estimate . The center line is located at
np0, and this is called an np chart.

Example 8.10
Using the data from Table 8.7, the control limits are computed as follows:

 = 0.254
n = 50

TABLE 8.7

Data for p Chart

Batch 
Number
(i)

Number of 
Defectives

(x)

Proportion of
Defectives

1 9 0.18
2 10 0.20
3 11 0.22
4 13 0.26
5 13 0.26
6 8 0.16
7 18 0.36
8 12 0.24
9 11 0.22

10 8 0.16
11 14 0.28
12 21 0.42
13 18 0.36
14 10 0.20
15 8 16
16 18 0.36
17 19 0.38
18 8 0.16

p( )

p
p

n p0 3
p0 1 p0–( )

n
------------------------± , if α× 0.0026=

np0 3 np0 1 p0–( )±=

p

p
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LCL = 50 × 0.254 − 3 = 3.45.
UCL = 50 × 0.254 + 3  = 21.95. 

The center line is located at 50 × 0.254 = 12.70.

8.4.3 Monitoring Number of Defects

If the quality of a component or product is measured in terms of the number
of defects per component or product or batch, then a c chart is used. The letter
c here denotes the number of defects per component or product (or per some
appropriate unit of the product—for example, number of defects per 10 yards
of a cable or per 1 yd2 of an aluminum sheet, etc.) or the number of defects in
a sample of size n. The hypotheses tested here are

H0: mean number of defects per piece or some unit or per batch = c0.
H1: mean number of defects per piece or some unit or product ≠ c0.

The test statistic is the number of defects per the appropriate unit, which is c.
The expected value and the standard deviation are (assuming that c obeys a
Poisson distribution) E(c) = c0; S.D.(c) = c0.
Hence, the control limits are c0 ± Zα/2 , which becomes:

(8.49)

The center line is at c0. If c0 cannot be specified, it can be estimated by the
mean number of defects from one or more sample batches, which is denoted
by . Then, the control limits become  The center line
is located at .

Example 8.11
The observations in Table 8.8 are the number of defects in five sample
batches, each containing 15 items. Assuming that the process was in control

TABLE 8.8 

Data for c Chart

Batch #
(i)

Number of Defects
in Batch

(c)

1 18
2 12
3 7
4 9
5 16

50 0.254 1 0.254–( )××
50 0.254 1 0.254–( )××

c0

c0 3 c0, if α± 0.0026=

c c 3 c, if α± 0.0026.=
c
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when these observations were collected, compute the limits of the c chart:

 = (18 + 12 + 7 + 9 + 16)/5 = 12.4

The limits are LCL = 12.4 − 3 = 1.84 and UCL = 12.4 + 3 = 22.96.
The center line is located at 12.4. All the c values used in the estimation of 
are within the control limits.

8.4.4 Monitoring Average Number of Defects

If the quality is measured in terms of the average number of defects per unit
(and not the actual number of defects per unit or the actual number of defects
per sample batch), then a U chart is used. Here, U denotes the average
number of defects per unit and c denotes the actual number of defects per
sample batch containing n items. 

If U0 denotes the in-control or target mean of the average defects per unit,
then the hypotheses being tested are

H0: mean number of average defects per unit = U0.
H1: mean number of average defects per unit ≠ U0.

The test statistic used is the average number of defects per unit, or U. The
expected value and standard deviation of U are

(8.50)

where n is the sample size. Hence, the control limits of the U chart are

which becomes:

(8.51)

The center line is at U0. If U0 cannot be specified, then it is estimated by the
sample mean number of defects per unit from observations collected when

c

12.4 12.4
c

E U( ) U0=

Standard deviation U( ) U0 n⁄( )=

U c n⁄=

E C( ) c0=

Var C( ) c0=

E U( ) c0 n⁄ U0= =

Var U( ) Var C( ) n2⁄ c0 n2⁄ nU0 n2⁄ U0 n⁄= = = =

U0 Zα 2⁄± U0 n⁄( )

U0 3 U0 n⁄( ), when α± 0.0026=
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the process is in control. Let this estimate be . Then the control limits are

(8.52)

The center line is located at 

Example 8.12
The data set in Table 8.9 contains the number of defects in five sample
batches, each containing 15 items. Assuming that the process was in control
when these observations were collected, compute the control limits of the U
chart.

There are two options for calculating the average number of defects per
unit (U). Both give the same value, as the sample sizes are equal:

 = [1.2 + 0.8 + 0.47 + 0.6 + 1.07]/5 = 0.83, or
 = [18 + 12 + 7 + 9 + 16]/(5 × 15) = 0.83

In this case,

LCL = 0.83 – = 0.12.
UCL = 0.83 + = 1.54. 

The center line is located at 0.83.

Example 8.13
The data on the number of defects found in five sample batches with unequal
sample batch sizes are given in Table 8.10. Compute the control limits of the
U chart.

In this example, the sample sizes are not equal, hence each sample batch
will have its own control limits. This is because the control limits,  ±

TABLE 8.9

Data for U Chart (I)

Batch #
(i)

Number of 
Defects in 

Batch 
(c)

Average Number 
of Defects per 

Unit  
(U)

1 18 18/15 = 1.2
2 12 12/15 = 0.8
3 7 7/15 = 0.47
4 9 9/15 = 0.6
5 16 16/15 = 1.07

U

U 3 U n⁄( )±

U .

U

U

3 0.83 15⁄( )
3 0.83 15⁄( )

U
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3 , are functions of the sample size. However,  is computed using
all the observations:

 = [2.5 + 2.0 + 1.0 + 1.4 + 1.125]/5 = 1.61, or
 = [5 + 6 + 2 + 7 + 9]/[2 + 3 + 2 + 5 + 8] = 29/20 = 1.45

Either can be used to compute the control limits. We will use 1.61, hence the
control limits are , where the subscript i denotes batch i.

When i = 1:

LCL = 1.61 − = −1.08  which is set to 0.
UCL = 1.61 + = 4.30.

When i = 2: 

LCL = 1.61 − = −0.59 which is set to 0.
UCL = 1.61 + = 3.81.

The control limits of the five batches are given in Table 8.11. It can be seen that
all the Ui are within the respective control limits.

TABLE 8.10

Data for U Chart (II)

Batch #
(i)

Sample Size
(ni)

Number of Defects
in Batch (ci)

Average Number of 
Defects per Unit

(Ui)

1 2 5 5/2 = 2.5
2 3 6 6/3 = 2.0
3 2 2 2/2 = 1.0
4 5 7 7/5 = 1.4
5 8 9 9/8 = 1.125
Total 20 29 —

TABLE 8.11 

Control Limits of U Chart

Batch #
(i) (ni) Ui LCLi UCLi

1 (2) 5/2 = 2.5 0 4.30
2 (3) 6/3 = 2.0 0 3.81
3 (2) 2/2 = 1.0 0 4.30
4 (5) 7/5 = 1.4 0 3.31
5 (8) 9/8 = 1.125 0.26 2.96

U ni⁄( ) U

U

U

1.61 3 1.61 ni⁄( )±

3 1.61 2⁄( )
3 1.61 2⁄( )

3 1.61 3⁄( )
3 1.61 3⁄( )
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8.5 Design  of Control Charts

In this section, the design of an  chart will be described, based on the
work by Duncan.3 The procedure used in the design of an  chart can be
used in the design of other control charts, with suitable modifications. From
Eqs. (8.1) and (8.2), the control limits of an  chart are ,
from which it can be seen that the variables required to construct an  chart
are

1. µ0 − In-control value of the process mean  (specified or estimated)
2. α − Probability of Type I error (commonly used value is 0.0026)
3. σ0 − In-control value of the process standard deviation (specified

or estimated)
4. n − Sample size
5. h − Length of interval between successive sample batches

In the design of an  chart by Duncan,3 n, h, and α are the decision variables.
The following assumptions are made:

1. The process always starts in its in-control state.
2. When the process is in the in-control state, the mean (µ) of the

quality characteristic is µ0 (unknown).
3. A single assignable cause occurs at random (for example, a tool

breaking) and results in a shift of magnitude δ in the mean from
µ0 to either (µ0 + δ ) or (µ0 − δ). The out-of-control mean is denoted
by µ1.

4. If the process starts in the in-control state, the time interval during
which the process remains in that in-control state is exponentially
distributed with a mean 1/λ (known).

5. The process is monitored by an  chart with the center line at µ0,
UCL at µ0 + kσ0/ , and LCL at µ0 − kσ0/ , where k = Zα/2

(σ0 is known; k and n are decision variables).
6. Sample batches of size n are taken at intervals of h time units

(n and h are decision variables) and is plotted on the chart.
7. When any point falls outside the control limits, a search for the

assignable cause is initiated. The time required to find the assign-
able cause is a constant equal to D.

8. Once the cause is located, it is removed and the process is restarted
in its in-control state (with µ = µ0).

The objective is to minimize the total expected costs per time, including:
sampling cost, cost of running the process in an out-of-control state, cost of

X
X

X µ0 Zα 2⁄ σ0 n⁄±( )
X

X

X
n n

X
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stopping the process unnecessarily (cost of false alarm), cost of investiga-
tions, and cost of rectification. The unit costs that Duncan used will be intro-
duced as and when required. It is an unconstrained optimization problem
with three decision variables (n, h, and k), out of which two are continuous
variables (h and k) and one (n) is an integer variable.

Because of the assumptions made, the process goes through a cycle consist-
ing of the following:

1. In-control period
2. Out-of-control period until detection
3. Time to take a sample batch and interpret the results
4. Time to find the assignable cause and fix it

The total length of the cycle is a random variable because intervals 1 and 2
are random variables. The cycle renews itself probabilistically at every start
and the lengths of the cycles are independent and identically distributed ran-
dom variables. Hence, this cycle is a renewal cycle and this stochastic process
is a renewal process.10 Our objective in this problem is to minimize the total
expected cost per unit time, denoted by E(TC). As per the Renewal Reward
Theorem, the total expected cost per unit time is equal to 

E(TC) = E(C)/E(CT) (8.53)

where E(C) is the expected cost/cycle and E(CT) is the expected length of a
cycle. Now the problem reduces to that of finding E(C) and E(CT). Let us first
obtain the expected length of a cycle, E(CT). We will find the expected length
of each of the nonoverlapping four segments in the cycle and add them to
find the expected length of the whole cycle.

8.5.1 In-Control Period

This is the part of the cycle during which the process stays in control. In other
words, during this entire period the process mean stays at the in-control
value, µ0. As per assumption 4, this period is an exponentially distributed
random variable with a mean 1/λ. Hence, 

E [In-control period] = 1/λ (8.54)

8.5.2 Out-of-Control Period

This period starts when the process goes out of control (that is, the process
mean µ has changed from the target value µ0 to µ1) and ends when the user
detects it because of an  falling outside the control limits on the control
chart. If we can obtain the expected number of trials required for the

X
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detection of the out-of-control state of the process (that is, the expected num-
ber of  values to be plotted before the first  falls outside the control lim-
its), then the expected length of the period until detection, which we will
denote by E(B), can be obtained by multiplying this expected number of 
values and the interval length, which is h. The number of  values to be plot-
ted before the first  falls outside the control limits follows a geometric dis-
tribution with a mean of 1/(1 − β), where β is the probability of Type II error
defined in Eq. (8.4). Hence, the expected length of the period until detection is

E(B) = h/(1 − β) (8.55)

There is an overlap between the in-control period and E(B). Let us denote
this overlap by L.  The expected value of this period—that is, E(L)—is to be
subtracted from E(B) in order to obtain the expected length of the out-of-
control period until detection.

The problem in finding E(L) is that we do not know at what interval the
process goes out of control. We can solve this problem by assuming that the
out-of-control state starts in the ith interval [(i − 1)h, ih] and conditioning on
that event. 

Let Ai ≡ out of control that occurs during the ith interval. That is,

Ai = [(i − 1)h ≤ S < ih]

where S is the time during which the process stays in control. Hence,

P(Ai) = P[(i − 1)h < S < ih]  (8.56)

The expected length of L, given that failure occurs (out-of-control state starts)
during the ith interval, is given by:

E[L/Ai] = E[S/Ai] − (i − 1)h (8.57)

Once the E[L/Ai] for all i (i = 1, 2, …), are obtained, E(L) can be found as:

(8.58)

Let f(s) be the probability density function of S, which is the time during which
the process is in control. From the definition of conditional expectation,

(8.59)

X X

X
X

X

E L( ) E L/Ai[ ] P Ai[ ]
i=1

∞

∑=

E S Ai⁄[ ] S
i−1( )h

ih

∫ f s Ai⁄( ) sd=
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The conditional probability density function, f(s/Ai) is 

f(s/Α i) = f(s)/P[Ai] = λe−λs/P[Ai] (8.60)

where

(8.61)

Now, Eq. (8.60) can be written as:

f(s/Ai) = λe−λs/[e−(i−1)hλ − e−λih], (i − 1)h < s < ih (8.62)

Hence, Eq. (8.59) is

(8.63)

Using Eq. (8.63),  (8.57) can be simplified to:

E[L/Ai] = (1 + λh − eλh)/λ(1 − e−λh) (8.64)

Finally, using Eq. (8.64), E(L) can be written as:

E(L) = (1 −(1 + λh)e−λh)/λ(1 − e−λh) (8.65)

Hence, the expected length of the out-of-control period is

E(B) − E(L) = [h/(1 − β)] − [(1 − (1 + λh)e−λh)/λ(1 − e−λh)] (8.66)

8.5.3 Time to Take a Sample Batch and Interpret the Results

In his paper, Duncan3 assumes that this interval is a constant, g, times the
sample size n. Let the length of this interval be U, which then is

U = g × n (8.67)

P Ai[ ] f s( ) sd
i−1( )h

ih

∫=

 e i−1( )hλ– e λ ih––=

E S Ai⁄[ ] sλe λ s– e i−1( )hλ– e λ ih––[ ]⁄ sd
i−1( )h

ih

∫=

 1 λ ih e λ ih– 1 λ ih λh–+( ) λ 1 eλh–( )⁄–+=
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8.5.4 Time to Find the Assignable Causes and Fix Them

Duncan3 assumes that this interval is a constant equal to D, as per assump-
tion 7. Now the total expected length of one cycle is

(8.68)

8.5.5 Expected Costs per Cycle

Duncan includes the following costs in the total costs per cycle, E(C):

1. Cost of sampling
2. Cost of searching for an assignable cause when none exists (false

alarm)
3. Cost of running the process in its out-of-control state
4. Cost of checking and eliminating an assignable cause

Let us now derive expressions for these costs.

8.5.5.1 Expected Cost of Sampling

Duncan assumes that the cost of sampling consists of a fixed cost of $a1 (per
sample batch), which is independent of the sample size, n, and a variable cost
of $a2 (per item). The expected sampling cost per cycle = sampling cost per
batch × expected number of batches per cycle, or 

(a1 + a2 × n) × E[CT]/h (8.69)

where E(CT) is given in Eq. (8.68).

8.5.5.2 Expected Cost of Searching for an Assignable Cause When None 
Exists or Expected Cost of False Alarms per Cycle

Duncan3 assumes that each time a false alarm occurs, a unit cost of $a3’  is
incurred. Hence, 

(8.70)

Let M be the number of false alarms/cycle, then

(8.71)

E CT( ) 1 λ h 1 β–( )⁄ 1 1 λh+( )e λ– h–( ) λ (1 e λh––( )⁄[ ]–+⁄ g n D+×+=

E cost of false alarms/cycle[ ]
   a ′ 3=  Expected number of false alarms× /cycle

Expected number of false alarms/cycle E M( )=

 m P M m=[ ]×
m=0

∞

∑=
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where P[M = m] is the probability distribution of the number of false
alarms per cycle. This probability distribution can be related to the distri-
bution of the length of time interval during which the process is in control
(S). The expected value of false alarms per cycle can be shown to be equal to

(8.72)

(8.73)

In Eq. (8.73),

(8.74)

and

(8.75)

Now, Eq. (8.73) is simplified to

(8.76)

Now, Eq. (8.70) can be written as:

E[Cost of false alarms/cycle] =  × αe−λh/(1 − e−λh) (8.77) 

8.5.5.3 Expected Cost of Running Process in Out-of-Control State

Duncan3 assumes that the unit cost of running the process in its out-of-control
state is $a4/unit time; therefore, 

(8.78)

E M( ) mα( )P mh s m 1+( )h< <[ ]
m=0

∞

∑=

 α m λe λ s– sd
mh

m+1( )h

∫
m=0

∞

∑=

E M( ) α m e mhλ– e m+1( )hλ––[ ]
m=0

∞

∑=

 α me mhλ– α m e m+1( )hλ–

m=0

∞

∑–
m=0

∞

∑=

α me mhλ–

m=0

∞

∑ α m e λh–( )m

m=0

∞

∑=

 αe λh–( )/ 1 e λh––( )2
=

α me m+1( )hλ–

m=0

∞

∑ αe λh– me mhλ–

m=0

∞

∑=

 αe λh– e λh– / 1 e λh––( )2[=

E M( ) αe λh– 1 e λh––( )2 αe λh– e λh– 1 e λh––( )2⁄[ ]–⁄=

 αe λh– 1 e λh––( )⁄=

a3′

E cost of running the process in its out-of-control state[ ]
a4 Expected length of time during which the process ×=

 is run in its out-of-control state
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The expected length of time the process is run in its out-of-control state is
segment 2 of the cycle, and as per Eq. (8.66) is

(h/(1 − β)) − [(1 − (1 + λh)e−λh)/λ(1 − e−λh)]

Hence, Eq. (8.78) is 

(8.79)

8.5.5.4 Expected Cost of Finding an Assignable Cause and Fixing It

Duncan3 assumes that this cost is a constant and is equal to $a3. Now, the total
expected cost per cycle, E(C), can be written as the sum of the costs derived
earlier, and is equal to 

(8.80)

where E(CT) is given in Eq. (8.68).
The objective function to be minimized is the expected total cost per unit

time, E(TC), which is obtained by dividing the total expected cost per cycle,
E(C), as per Eq. (8.80), by the total expected length of one cycle, E(CT), as per
Eq. (8.68):

(8.81)

Because of the complexity of this function and the fact that n is an inte-
ger, this problem cannot be solved by taking partial derivatives of the
objective function with respect to each of the decision variables and set-
ting them equal to 0. Numerical methods or trial-and-error methods are
recommended.

There are many papers that deal with the economic design of control
charts. Montgomery,6 Svoboda,11 and Ho and Case4 have provided excellent
reviews of the work done in this area. The economic design models are not

E Cost of running the process in out-of-control state[ ]

     a4 h 1 β–( )⁄( ) 1 1 λh+( )e λh––( ) λ 1 e λh––( )⁄[ ]–{ }×=

E C( ) a1 a2 n×+{ } E CT( ) h a3′ αe λh– 1 e λh––( )⁄×+⁄=

 a4 h 1 β–( )⁄ 1 1 λh+( )e λh––( ) λ 1 e λh––( )⁄[ ]–{ } a3+×+

E TC( ) a1 a2n+{ } E CT( ) h⁄ a3′ αe−λh 1 e−λh–( ) a4 h 1 β–( )⁄( ){×+⁄×+[=

1 1 λh+( )– e−λh( ) λ 1 e−λh–( )⁄[ ]– } a3+ ] 1 λ h+ 1 β–( )⁄⁄[⁄

1 1 λh+( )e−λh–( ) [λ 1 e−λh–( )⁄[ ] g n D+×+ ]–
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popular among the practitioners because of the complexity of the models and
the difficulties in estimating the cost parameters.7 

8.6 Some Recent Developments

The traditional c and U charts assume that the underlying distribution of the
number of defects per unit or batch is a Poisson distribution, but this assump-
tion is not valid in real-life applications. Also, the control limits are derived
assuming a normal approximation. To overcome these shortcomings of the c
and U charts, Xie and Goh12 proposed new control limits based on geometric
distribution. Chan et al.2 recently developed a new type of control chart, the
Cumulative Quantity Control chart, because of the unsatisfactory perfor-
mance of the c and U charts for monitoring high-yield processes with low
defect rates. Recently, Philippe8 developed a special EWMA type of chart for
monitoring the range R.
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8.8 Problems

 1. The in-control mean of the outside diameter of a component is 0.65"
and the in-control standard deviation is 0.001". The diameters are
normally distributed.
a. What are the control limits of the  chart, if α = 0.0026 and the

sample size is 6?   
b. What is the probability of running the process when the mean

shifts to 0.651"?
2.  The in-control mean and the standard deviation of a quality char-

acteristic are 2.50" and 0.005", respectively. The characteristic is
normally distributed.
a. What are the control limits of the  chart, if α = 0.005 and n = 6? 
b. What fraction of components is expected to fall outside the

tolerance limits of 2.500 ± 0.01" when the process is in control ?   
c. What is the probability of Type II error if the mean shifts to

2.505"?
3. Sample batches of size n = 5 are collected from a process each day.

After 25 sample batches have been collected,  = 30 and  = 2.1.
Both charts exhibit a process that is in control. The quality charac-
teristic is normally distributed. Assume that α = 0.0026.
a. Estimate the process standard deviation. 
b. Determine the limits for the  and s charts.

4. A manufacturer is interested in controlling a process, using an 
chart. Historical data for 5 sample batches, each consisting of two
observations, are as follows.

Determine the control limits of the  and s charts, assuming
α  = 0.0026.

5. The surface roughness values of ten successive surface plates
ground on a grinding machine are as follows. Set up the limits for
the individual and moving range charts. Assume that α = 0.0026.

Sample 
Batch Standard Deviation (s)

1 99 0.8
2 98 1.0
3 104 1.0
4 101 1.4
5 98 0.8

X

X

X s

X

X

X

X
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6. The following are the hardness values of ten powdered metal com-
ponents made out of successive blends. Set up the control limits
for the appropriate control charts, with α = 0.0026. 

7. The following data were collected from a foundry regarding the
hardness of cast iron from successive charges of the cupola.

52 50 48 51 50

Assume that µ0 = 50, σ0 = 2, L = 3, and λ = 0.8. Set up an EWMA
control chart and compute the test statistics and control limits. Also,
identify the out-of-control points, if any.

8.  In order to monitor the quality of the picture tubes of television
sets, the following data were collected. These are the actual number
of nonconforming units found in sample batches of size 50 each:

Set up the appropriate control chart(s) (with LCL, UCL, and CL)
using the above data. Assume α = 0.0026.

Surface 
Item Roughness

1 41
2 42
3 44
4 42
5 40
6 42
7 41
8 43
9 41

10 40

Blend Hardness

1 65
2 63
3 61
4 64
5 66
6 64
7 62
8 60
9 61

10 64

Batch # 1 2 3 4 5 6 7 8 9 10
Nonconforming 2 1 6 3 3 1 8 1 4 5

units
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9. An automobile manufacturer wants to monitor the quality of the
automobiles manufactured. The following data were collected on
the number of nonconformities in 10 sample batches with 12 auto-
mobiles in each:

Set up the appropriate control chart(s)  (with LCL, UCL, and CL)
using the above data. Assume α = 0.0026.

10. Aluminum sheets are produced in sizes of 4’ × 4’. The producer is
concerned about the surface defects on the sheets and collected the
following data to monitor the production process:

Set up the appropriate control chart(s) (with LCL, UCL, and CL)
using the above data. Assume α = 0.0026.

11. Suppose that your assistant has been maintaining three c control
charts:  one to monitor the number of defects of type A per product
(cA), one to monitor the number of defects of type B per product
(cB), and the third chart to monitor the number of defects of type C
per product (cC). Let us assume that a type A defect costs your
company $a1 to fix, a type B defect costs $a2 to fix, and a type C
defect costs $a3. Suppose that you want to maintain one control
chart to monitor the total amount in dollars required to fix all the
defects of types A, B, and C per product. That is, the test statistic
to be plotted on the new control chart is total cost per product =
a1cA + a2cB + a3cC, where cA, cB and cC  are  the actual number of defects
of types A, B, and C  per product, respectively. Assume that the
mean number of defects of types A, B, and C per product are C0A,
C0B, and C0C, respectively.
a. What are the limits of the new control chart?  Assume that α =

0.005. Assume also that cA, cB, and cC are independent.
b. If a1 = $5.00, a2 = $15.00, and a3 = $10.00; the mean number of defects of

type A per product (C0A ) = 3; the mean number of defects of
type B per product (C0B) = 4; and the mean number of defects
of type C per product (C0C) = 8, what are the control limits of
this new chart? (α = 0.005.)

Batch # 1 2 3 4 5 6 7 8 9 10
Nonconformities 2 10 2 1 5 6 4 7 5 3

Batch # 1 2 3 4 5 6 7 8 9 10
Batch size 1 5 2 3 2 2 3 1 1 3
Surface defects 1 2 0 4 2 0 6 0 1 1

in the batch
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12. An  chart is used to monitor the mean of a quality characteristic.
The process is judged to be out of control if the process shifts by
1.5 standard deviations. The length of time the process is in control
is exponentially distributed with a mean of 100 hours. The fixed
sampling cost is $1.00 per batch and the variable cost is $0.20 per
sample observation. It costs $10.00 to investigate a false alarm, $2.50
to find an assignable cause, and $50.00 per hour if the process is
run in its out-of-control state. The time required to collect and
evaluate a sample is 0.02 hour and it takes 1.5 hours to locate an
assignable cause.

Assume that h = 30 minutes, k = 2.81, and n = 5. What is the
expected cost per hour if this control chart is used?

X
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9.1 Introduction

In the design of experiments, a single experiment or a sequence of experi-
ments is performed to test and quantify the effects of one or more input vari-
ables on one or more output variables of a process or a product. The design
of experiments may be used to help improve the capability of a process by
identifying the process and product variables that affect the mean and the
variance of the quality characteristic(s) of the product. It can also help in
improving process yields. The variables that affect the output variables are
divided into two groups: 

1. Input variables or signal factors 
2. Noise variables

9.1.1 Input Variables or Signal Factors

Input variables or signal factors can be set at the desired levels by the exper-
imenter; that is, these variables can be controlled during the experiment and
at the design stage and�or in the actual production stage. 

9.1.2 Noise Variables 

Noise variable factors either cannot be controlled or are difficult and �or
expensive to control during the design or actual production stage. Some exam-
ples of these factors are the composition of raw materials used in manufacture
and the humidity level in a production shop. Both these variables could be
controlled but only at considerable cost. 
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9.1.3 Other Variables

A third type of variable which includes variables that are functions of input
variables and affect the output variables, is called an intermediate variable.
The output variable that is being studied and measured in an experiment is
the response variable. Identifying the input variables, intermediate variables,
noise variables, and response variables is a critical step in any experiment
and can be effectively performed using cause-and-effect diagrams.1

9.1.4 Replication 

Experimental runs under identical conditions should be replicated a suffi-
cient number of times to obtain accurate estimates of experimental errors and
the effects of the input variables on the response variables(s).

9.1.5 Randomization 

The order of assigning objects or components to the levels of factors and
experimental runs should be randomized as much as possible in order to bal-
ance out the effect of the noise variables on the response variables, to mini-
mize the bias, and to introduce independence among the observations of the
response variables. This may not be easy or feasible in all experiments.

9.2 Single-Factor Experiments

In these experiments, the effect of only one signal factor or input variable on
a response variable is studied. 

9.2.1 Analysis

The following assumptions are made in this design.

1. The single factor is set at a different levels. 
2. At each of the levels of the factor, n experiments are conducted;

that is, the number of replications is n. 
3. The value of the jth response variable at the ith level of the factor

is denoted by yij, i = 1, 2, …, a and j = 1, 2, …, n.
4. The yij for any given level i are independent and follow normal

distribution with a mean µi and variance σ2, i = 1, 2, …, a.

Let us consider the following example.
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Example 9.1
A process engineer wants to test the effect of annealing temperature on the
tensile strength of a component. She selects three levels of annealing tempera-
ture: 600°F, 650°F, and 700°F. A total of nine identical components are selected
for the experiment, and three components are tested at each of the three levels.
The components are randomly assigned to be annealed at the three levels of
annealing temperature. The coded values of the tensile strengths of the nine
components are given in Table 9.1. In this example, a = 3 and n = 3. The jth
observation at level i of the factor, yij, can be written as:

yij = µi + eij (9.1)

where µi is the population mean of the observations at level i of the factor and
eij is the associated error. Because of the assumption that the yij are indepen-
dent and normally distributed with a mean µi and variance σ2, the error
terms, eij, are also independent and normally distributed with a mean 0 and
a variance σ2. The observation yij can also be written as:

yij = µ + (µi − µ) + (yij − µi) (9.2)

where  is the grand mean. 
Let 

τi = µi − µ (9.3)

which represents the effect of level i of the factor on the response variable.
From Eqs. (9.1) and (9.2),

eij = yij − µi (9.4)

Hence, Eq. (9.2) becomes:

yij = µ + τi + eij, for i = 1, 2, …, a and j = 1, 2, …, n  (9.5)

TABLE 9.1

Data for Example 9.1

Temperature Replication 1 Replication 2 Replication 3 Row Mean

600°F 5 (y11) 6 (y12) 7 (y13) 6.0 
650°F 3 (y21) 4 (y22) 5 (y23) 4.0 
700°F 7 (y31) 8 (y32) 9 (y33) 8.0 

y1 ⋅( )
y2 ⋅( )
y3 ⋅( )

µ �i=1
k µi

k
---------------=
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This is the linear model for single-factor experiments. The sum of the squares
of errors, eij, is

(9.6)

 It can be shown that the estimate of µi, which minimizes this quantity, is 

(9.7)

As the eij are independent with mean = 0 and a common variance, the esti-
mate given in Eq. (9.7) is also an unbiased estimator of µi, i = 1, 2, …, a. Upon
replacing eij and µi by the respective estimators in Eq. (9.6), we get:

(9.8)

This is called the sum of squares due to error (SSE). The total variation present
in the data is

(9.9)

where 

(9.10)

which is the estimate of µ. The total variation is called the sum of squares total
(SST). The difference between SST and SSE is obtained as follows:

(9.11)

 

It can be seen that the term on the right-hand side is a positive quantity, hence
SST ≥ SSE. Rearranging the terms, Eq. (9.11) can be written as:

(9.12)

eij
2

j=1

n

∑
i=1

a

∑ yij µi–( )2

j=1

n
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a
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yi ⋅
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n yij

n
--------------- , i 1, 2, …, a= =

eij
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n

∑
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a

∑ yij yi ·–( )2
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n
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a
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Total variation yij y⋅⋅–( )2
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n
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j=1
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i=1

a
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 n yi ⋅ y⋅ ⋅–( )2
.

i=1

a

∑=

 yij y⋅ ⋅–( )2
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∑
i=1

a
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yij yi⋅–( )2
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a
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a
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The term on the left-hand side of Eq. (9.12) is the sum of squares total (SST), the
first term on the right-hand side is called the treatment sum of squares (SS treat-
ment) and the second term is the sum of squares due to error (SSE). So, in the
single-factor model, the total sum of squares is partitioned into the treatment
sum of squares and the sum of squares due to error.

There is an alternate way of obtaining the relation in Eq. (9.12). The obser-
vation yij can be written as follows (replacing the means in Eq. (9.2) by their
respective estimators):

(9.13)

which gives

and

(9.14)

As the third term can be shown to be equal to zero, Eq. (9.14) becomes:

which is the same as Eq. (9.12)
The original objective of testing the effect of the single factor on the

response variable is equivalent to testing the following hypotheses:

Null hypothesis, H0: µ1 = µ2 = ⋅⋅⋅ = µk.
Alternate hypotheses, H1: At least two µi are unequal. 

Now we need to develop an appropriate test statistic with which we can
test these hypotheses.

yij y⋅⋅ yi ⋅ y⋅⋅–( ) yij yi ⋅–( )+ +=

yij y⋅⋅– yi ⋅ y⋅⋅–( ) yij yi ⋅–( )+=

yij y⋅⋅–( )2
yi ⋅ y⋅⋅–( ) yij yi ⋅–( )+[ ] 2

=

yij y⋅ ⋅–( )2

j=1

n

∑
i=1

a

∑ yi ⋅ y⋅⋅–( ) yij yi ⋅–( )+[ ] 2

j=1

n

∑
i=1

a

∑=

 yi ⋅ y⋅ ⋅–( )2
yij yi ⋅–( )2

j=1

n

∑
i=1

a

∑+
j=1
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∑
i=1

a
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 2 yi ⋅ y⋅ ⋅–( ) yij yi ⋅–( )
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i=1
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yij y⋅ ⋅–( )2
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The important underlying factor in developing the test statistic is the
assumption that all the yij have the same variance (σ 2). If the alternate
hypothesis is true, then there are a sample batches, each one from a different
population with a different mean but the same variance. The sample variance
from each of these sample batches is an unbiased estimator of the common
variance, σ2. The sample variance from the ith batch is

(9.15)

The pooled estimator of σ 2, using these k estimators, is

(9.16)

The next step in the development of the test statistic is to divide the sums
of squares by the respective degrees of freedom, which is the number of sta-
tistically independent elements in the associated sum of squares. Estimation
of a parameter causes loss of one degree of freedom. The calculation of SST
requires calculation of  which estimates µ. Hence, the degrees of freedom
associated with SST are the total number of observations −1: 

Degrees of freedom (SST) = a n − 1 = N − 1 (9.17)

where N is the total number of observations. The degrees of freedom associ-
ated with SS treatments is the total number of levels of the factor used in the
experiments −1:

Degrees of freedom (SS treatments) = a − 1 (9.18)

The degrees of freedom (DF) associated with SSE is computed by subtracting
the degrees of freedom for SS Treatments from the degrees for SST. That is,

(9.19)

Dividing the sums of squares by the associated degrees of freedom yields the
associated mean squares; that is,

Mean square (treatments) = MST = SS(treatments)/(a − 1)  (9.20)

Mean square (error) = MSE = SSE/a(n − 1) (9.21)

si
2 Σ j=1

n yij yi ⋅–( )2

n 1–( )
----------------------------------, i 1, 2, …, a= =

σ̂2 Σi=1
a si

2

a
--------------

Σ a
i=1 Σ n

j=1 yij yi ⋅–( )2

a n 1–( )
-----------------------------------------------= =

 SSE
a n 1–( )
--------------------=

y⋅⋅,

DF SSE( ) DF SST( ) DF SS treatments( )–=

 an 1–( ) a 1–( )–=

 a n 1–( )=

 N a–=
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The right-hand side of Eq. (9.21) is the same as the right-hand side of Eq. (9.16),
hence

E(MSE) = σ 2  (9.22)

The expected value of MST can be shown to be equal to

E(MST) = σ 2 + nθ 2  (9.23)

where

(9.24)

which is a function of the difference among the means of the levels. This
quantity will be zero if there is no difference among the means. Hence, both
MSE and MST are unbiased estimators of the common variance σ2 if there is
no difference among the means, µi. If the means are different, then MSE is still
an unbiased estimator of σ 2, but MST is a biased estimator of the common
variance σ2 because it estimates an additional quantity nθ2. 

9.2.1.1 Some Results from Theory of Statistics

1. SSE �σ2 follows a chi-square distribution with a(n − 1) degrees of
freedom.

2. SS(treatments) �σ2 follows a chi-square distribution with (a − 1)
degrees of freedom if the means are equal; that is, if the null hypoth-
esis, H0: µ1 = µ2 = ⋅⋅⋅ = µa, is true.

3. The ratio  follows an F distribution with
(a − 1) numerator degrees of freedom and a(n − 1) denominator degrees
of freedom when the null hypothesis is true.

From result 3, the logical test statistic is

(9.25)

which is large if the alternate hypothesis—H1: At least two µi are unequal—is
true. This gives the following acceptance�rejection rules for the hypotheses
testing for a specified probability of type I error, α:

Accept H0 if the test statistic is less than or equal to Fα[(a − 1), a(n − 1)].
Otherwise, reject H0 and accept H1.

θ 2 Σi=1
a µi µ–( )2

a 1–( )
-------------------------------=

SS treatments( )/ a 1–( )
SSE/ a n 1–( )[ ]

------------------------------------------------------------- MST
MSE
------------=

Computed F MST
MSE
------------=
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The values of Fα[(a − 1), a(n − 1)] are tabulated in the F table given in Table A.3
in the Appendix for α = 0.05 and 0.01. Calculation of the sums of squares,
degrees of freedom, and mean squares is summarized in the analysis of vari-
ance (ANOVA) table given in Table 9.2.

The following computationally simpler formulas can be used to compute
the sums of squares:

(9.26)

(9.27)

SSE = SST – SS(treatments). In Eqs. (9.26) and (9.27),  = 1, 2, … a
and y⋅⋅ = 

9.2.1.2 Computation of Sum of Squares

Let us assume that α = 0.05 (level of significance). The ANOVA results are
given in Table 9.3. As 12.0 > 5.14, we conclude that temperature affects tensile
strength at α = 0.05.

9.2.2 Confidence Intervals for the Treatment Means

Using the above results, the 100 (1 − α)% confidence interval for the mean for
treatment i (level i of the single factor), µi, is 

(9.28)

TABLE 9.2

ANOVA Table for Single-Factor Experiments

Source of 
Variation

Sum of
Squares

Degrees of
Freedom Mean Square

Computed F 
(Test Statistic)

F Value from 
Table A.3

Treatments SS (treatments) (a − 1) SS(T)/(a − 1)
= MST

MST �MSE

Error SSE a(n − 1) SSE/a(n − 1) 
= MSE

—

Total SST an − 1 — —

SST yij y⋅⋅–( )2

j=1

n

∑
i=1

a

∑ yij
2 y⋅⋅ 

2

an
--------–
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∑
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n yi ⋅

2

n
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an
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n yij.

SST 52 62 72 32 42 52 72 82 92 542

3 3×
------------–+ + + + + + + + 30.0= =
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n
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where s =  and tα/2[a (n − 1)] is the t value with a(n − 1) degrees of free-
dom and area to its right = α/2. The t values can be found in Table A.2 in the
Appendix.

Example 9.2
In Example 9.1, let α = 0.05 (95% confidence interval). As a = n = 3, the degrees
of freedom = 3(3 − 1) = 6. t0.025(6) = 2.4469;  =  = 1.0. The limits for the
mean of treatment 1 are [6 − 2.4469 ×  6 + 2.4469 × ] = (4.59, 7.41).

9.2.3 Fitting Equations

In most design of experiment problems, the experimenter is usually inter-
ested in obtaining a quantitative relationship between the response (depen-
dent) variable and the independent variables. This quantitative relationship
is usually expressed as a mathematical equation. For example, in an experi-
ment with a single factor (independent variable), the relationship between
the response variable y and the independent variable x could be expressed by
the following linear equation, assuming a linear relationship:

y = β0 + β1x, (9.29)

where β0 is the intercept on the vertical axis and β1 is the slope of the line.
These parameters are estimated using the data on y and x using regression
analysis based on the method of least squares.

The linear model is restrictive and may not adequately capture the true
relationship between y and x. The polynomial model is a better model to rep-
resent the relationship between y and x, assuming that x is a quantitative
variable:

y = β0 + β1x + β2x2 + β3x3 + β4x4 + ⋅⋅⋅ + βpxp + ε (9.30)

which is a pth-degree polynomial (or the order of the polynomial is p).

• The most common objective in obtaining the relationship between
y and x is to determine the lowest possible order polynomial equa-
tion (to minimize p) that still adequately describes the relationship.

TABLE 9.3

ANOVA Table for Example 9.1

Source of 
Variation

Sum of 
Squares

Degrees of 
Freedom

Mean 
Square

Computed F 
(Test Statistic)

F Value from
Table A.3 (αααα ==== 0.05)

Temperature 24 3 − 1 = 2 24/2 = 12 12/1 = 12.0a 5.14
Error 6 8 − 2 = 6 6/6 = 1 —
Total 30 9 − 1 = 8 — —
a Indicates significance at  α = 0.05.

MSE

MSE 1
1/ 3( ), 1/ 3 )(
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• The order of a polynomial equation depends upon the number of
levels of x. The maximum value of p = the number of levels −1.

• The coefficients of the polynomial equation can be determined by
using regression methods.4

• If the levels of the factor (independent variable) are equally spaced,
then determining the polynomial equation is simplified by using
orthogonal polynomials.3

• If the levels of the factor are not equally spaced, then a regular
polynomial equation can be used and the parameters can be deter-
mined using regression analysis (method of least squares), which
software such as MINITAB and SAS performs efficiently.

9.2.4 Diagnosis Agreement Between the Data and the Model

The analysis of variance technique developed to test whether the effect of the
factor on the response variable is significant depends upon the important
assumption that the observations are independent and normally distributed
with a common variance, σ 2. This implies that the errors, eij, are independent
and normally distributed with a mean 0. In order to verify this assumption,
tests must be performed on the data and the residuals, which estimate the
errors:

(9.31)

(Refer to Example 9.1.) The residuals are given in Table 9.4. These residuals
must be tested for independence by plotting the residuals against the treat-
ment means for common variance using tests such as the Levene (Med)
test, F Max test, and Bartlett’s test3 and for normality using tests such as the
Kolmogorov–Smirnov tests. These diagnostic tests can be performed using
MINITAB or SAS software. If the original data are not found to have homo-
geneity of variances, then transformation should be performed on the data so
that the transformed data have equal variance.

The method of power transformations to stabilize variances uses the
empirical relationship between the standard deviation and mean to obtain

TABLE 9.4

Residuals for Example 9.1

Temperature (°F) Replication 1a Replication 2a Replication 3a
Row/Treatment 

Mean

600 (5) –1 (6) 0 (7) +1 6.0
650 (3) –1 (4) 0 (5) +1 4.0
700 (7) –1 (8) 0 (9) +1 8.0
a The original observations are enclosed within parentheses.

êij yij yi ⋅– for all i and j=
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the transformation that results in homogeneity of variances.2 Let us assume
that in a particular experiment involving a single factor, a levels of the factor
were tested with n replications at each level. Let the standard deviation and
mean for level i be si and , respectively:

(The sample standard deviation si estimates the population standard devia-
tion σi, and the sample mean  estimates the population mean µi, for i = 1,
2, …, a.) As per the assumption for the linear model for a single-factor exper-
iment, σ1 = σ2 = ⋅⋅⋅ = σa.

Let us assume that in this example, the σi are not equal and that the rela-
tionship between the σi and the µi is of the form: σ ∝  µ β, where β is a constant.
Denoting the original variable (observations) by y, σy ∝  µβ, which can be
written as:

σy = δµβ  (9.32)

where δ is the proportionality constant.
Let us assume a power transformation of the type:

x = y p

which will result in the following relation between the standard deviation
and the mean of x:

(9.33)

The condition to be satisfied for x to have homogeneity of variance is p + β − 1 =
0 or p = 1 − β. This requires estimation of the constant β, which can be
obtained by replacing σy , δ, and µ by their respective estimators in Eq. (9.32):

(9.34)

Taking natural logarithms of both sides of Eq. (9.34) yields:

(9.35)

This is a straight line, and the slope of the line is the estimate of β, which is 
For example, if the estimated linear relationship is ln(si) = 0.85 + 0.75 ln
then  = 0.75, and the required power transformation is x = y1−0.75 = y0.25.

After the data are transformed, ANOVA should be performed and infer-
ences made on the transformed data, but final conclusions must be stated
with respect to the original data.

yi ·

si
Σ j=1

a yij yi ⋅–( )2
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----------------------------------=
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Σ j=1

n yij

n
---------------=

yi ⋅
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si dˆ y i ⋅
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si( )ln δ̂( )ln β̂ yi ⋅( )ln+=

β̂.
yi ⋅( ),

bˆ
©2001 CRC Press LLC



9.3 Random Effects Model

In Example 9.1, in which the effect of annealing temperature on the strength
of the component was tested, the complete treatment population of interest
consisted of the three levels (or treatments) of the annealing temperature
(600°F, 650°F, and 700°F) only. These are called fixed effect models, in which
most of the time inferences are made only on those particular treatments used
in the experiment.

There are other types of studies in which the researcher would want to
identify the major sources of variability in a population of treatments and
estimate their variances. In such cases, the experimenter would randomly
select the levels or treatments from the population. These are called random
effects models. For example, if we are interested in testing whether there is a
difference in the percentages of defective parts manufactured by the opera-
tors on the shop floor, we would select a certain number of operators ran-
domly from a large group of operators on the shop floor and perform the
experiment. This is a random effects model because a limited number of
operators, who are considered levels or treatments, are selected randomly
from a large population of operators and the results from this experiment will
be extended to the entire population of the operators.

The model for the fixed effects model was given earlier in Eq. (9.5) as:

yij = µ + τi + eij

where τi = µi − µ is the effect of the ith treatment or level. 
The model is the same for the random effects model. The major difference

lies in τi, which is a constant in the fixed effects model. But, in the random
effects model, τ i is a random variable, because the treatments (levels) are
chosen randomly and the inferences will be extended to the population of
treatments.

Let us replace τi by fi in the model, which then becomes:

yij = µ + fi + eij, for i = 1, 2, …, a and j = 1, 2, …, n (9.36)

where fi is the random effect for treatment i:

µi = µ + fi, for i = 1, 2, …, a (9.37)

and eij = yij − µi, as in the fixed effects model.
Let us assume:

1. The observation yij is assumed to follow a normal distribution with
a mean of µi and a common variance,  for all i and j.σy

2
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2. The random variables eij and fi are assumed to be independent of
each other.

3. The error eij is normally distributed with a mean of 0 and a variance
of  for all i and j.

4. The random effect fi is normally distributed with a mean of 0 and
a variance of  for all i. 
• If  = 0, the population of treatments does not affect the response

variable.
• If  > 0, the population of treatments affects the response variable.
• In this model, the treatment means, µi, are of no interest, because

the treatments (or levels) are only a sample from the population
of treatments. The parameter of interest is 

• The variances  and  are called the components of variance,
and the model in Eq. (9.36) is called the variance components
model. Because of the assumptions made,

(9.38) 

Let us look at the similarities and differences between the fixed effects
model and random effects model.

Fixed Effects Model Random Effects Model

yij = µ + τi + eij yij = µ + fi + eij

Var(yij) = Var(eij) Var(yij) =  
H0: µ1 = ⋅⋅⋅ = µa H0:  = 0 (treatment does not affect response 

variable)
H1: At least two µi are equal H1:  > 0 (treatment affects response variable)
SST = SS(treatments) + SSE SST = SS(among group) + SS(within group) 

= SSA + SSE
DF(SST) = a n − 1 DF(SST) = a n − 1
DF(SS treatments) = a − 1 DF(SS among groups) = D(SSA) = a − 1
DF(SSE) = a(n – 1) DF(SS within groups) = a(n − 1)
Mean square (treatments) Mean square (among groups) 

 

Mean square (error) Mean square (within groups) 

(9.39)

E(MSE) ==== E(MSW) ==== 

(9.40)
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Example 9.3
The following data show the effect of four operators chosen randomly on the
number of defectives produced on a particular machine:

1. Perform an analysis of variance at the 0.05 level of significance.
2. Compute the estimates of the operator variance component and

the experimental error variance component.

SST = 52 + 42 + ⋅⋅⋅ + 22 + 42 − 702/20 = 103.0.
SSA = (322 + 152 + 82 + 152)/5 − 702/20 = 62.6.

The ANOVA results are given in Table 9.5. There is wide variation in the out-
put among the operators at the 0.05 significance level (we are not selecting
the best operator).

The estimate of the operator variance component 

9.4 Two-Factor Experiments

9.4.1 Analysis

Even though study of single-factor experiments is necessary to understand
the basis of ANOVA and other analyses, many experiments in real-life appli-
cations involve the study of the effects of two or more factors on the response
variable at the same time. A design in which there is at least one observation
for each of all possible combinations of all levels of all factors included in the

Operators
Lot 1 2 3 4 

1 5 4 4 5
2 8 2 0 3
3 6 1 1 2
4 6 6 1 1
5 7 2 2 4

Total 32 15 8 15

TABLE 9.5

ANOVA for Example 9.3

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean 
Square Computed F

F from 
Table A.3 
(αααα ==== 0.05)

Operators (group) 62.6 4 − 1 = 3 20.87 8.26a 3.24
Error 40.4 19 − 3 = 16 2.53 —
Total 103.0 20 − 1 = 19 — —
a Indicates significance at  α = 0.05.

20.87 2.53–
5

------------------------------ 3.67.= =
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study is called a factorial design or a full factorial design. The simplest type of
factorial design is a two-factor experiment, in which the effects of two factors
on one or more response variables are tested simultaneously.

In a two-factor experiment, the factors are usually denoted by A and B. Let
the number of levels of factor A be a and the number of levels of factor B be
b. Then, there is a total of a × b combinations in a full factorial design. If there
are n replications, then there is a total of n × a × b observations. The levels of
factor A are A1, A2, …, and Aa, and the levels of factor B are B1, B2, …, and Bb.

9.4.1.1 Notation

• yijk = kth observation at level i of factor A and at level j of factor B,
that is; the kth observation in cell (i, j), i = 1, 2, …, a; j = 1, 2, …, b;
k = 1, 2, …, n.

• Sum of observations at level i of factor 

• Sum of observations at level j of factor 

• Sum of all the observations = 

• Sample mean of observations at level i of factor 

• Sample mean of observations at level j of factor 

• Grand mean of all observations = 

• Sum of observations in cell 

• Sample mean of observations in cell  

9.4.1.2 Assumptions 

The observations in the cell (i, j) are assumed to be normally distributed with
a mean of µi j and a common variance of σ2. All the observations are indepen-
dent of each other.

The mean of the (i, j)th cell = mean of the population at the ith level of A
and jth level of B = µi j:

The effects these means and their estimates are given in Table 9.6.

TABLE 9.6

Means and Their Estimates

Mean Measures Estimated by

Effects of level i of A and level j of B
Effect of level i of A
Effect of level j of B

µ —

A � j=1
b �k=1

n yijk yi ⋅ ⋅.= =

B �i=1
a �k=1

n yijk y⋅ j ⋅.= =

�i=1
a � j=1

b �k=1
n yijk y⋅ ⋅ ⋅.=

A
yi ⋅ ⋅

bn
------ yi ⋅⋅.= =

B
y⋅ j ⋅

an
------ y⋅ j ⋅.= =

y⋅ ⋅ ⋅

abn
--------- y⋅ ⋅ ⋅ .=

i, j( ) �k=1
r yijk yij ⋅.= =

i, j( ) yij ⋅

n
------ yij ⋅.= =

mi ⋅
Σ j=1

b µij

b
----------------= m ⋅ j

Σi=1
a µij

a
---------------- µ Σ j=1

a Σ j=1
b µij

ab
--------------------------==

µij yij ⋅

µi ⋅ yi ⋅ ⋅

µ⋅ j y⋅ j ⋅

y⋅ ⋅ ⋅
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Example 9.4
Let us modify the single factor experiment in Example 9.1 to include material
composition as the second factor, B, in addition to the annealing temperature, A.
There are four levels of B(b = 4) and three levels of factor A(a = 3). Each of the
12 combinations is replicated two times (n = 2). The observations are given in
Table 9.7.

In a two-factor experiment, in addition to the main effects (due to A and B),
there is one other effect present. Consider the observations and their sample
means in cells (1, 1), (1, 2), (2, 1), and (2, 2), at levels 1 and 2 of A and B, which
are given below:

Figure 9.1 contains the plot of these averages. It can be seen that the effect of
A (annealing temperature) on the response variable (strength) depends upon
the level of B (material composition). More specifically:

• At B1 (5%),  decreases from 6 to 3, as A increases from A1 to A2.
• At B2 (8%),  increases from 4 to 6, as A increases from A1 to A2. 

This difference in the effect of A on the mean (of the response variable) for
different levels of B is due to the interaction between A and B. If there is no
interaction in this example, then the plot of the true means will be as given in

TABLE 9.7

Data for Example 9.4

Temperature 
(A)

Composition (B)
Row

Total (yi⋅⋅⋅⋅⋅⋅⋅⋅)
Row 

Mean 
 j = 1 
(5%)

j = 2 
(8%)

j = 3 
(11%)

j = 4 
(14%)

 

i = 1 600°F 5/7 
12 (6)

3/5 
8 (4) 

8/4 
12 (6)

7/5 
12 (6)

44 (y1⋅⋅) 5.5

i = 2 650°F 3/3
6 (3)

4/8 
12 (6)

2/3 
5 (2.5)

4/5
9 (4.5)

32 (y2⋅⋅) 4.0

i = 3 700°F 7/6 
13 (6.5) 

5/6 
11 (5.5)

7/9 
16 (8)

6/6 
12 (6)

52 (y3⋅⋅) 6.5

Column total (y⋅j⋅) 31 (y⋅1⋅) 31 (y⋅2⋅) 33 (y⋅3⋅) 33 (y⋅4⋅) 128 (y⋅⋅⋅) —
Column mean 5.17 5.17 5.5 5.5 — 5.33 
 

Note: In the (i, j) cells, the numbers underlined are the cell subtotals, yij⋅, and the numbers
within parentheses are the cell means,  

Factor B Factor B
Level 1 Level 2

Factor A
Level 1 6 4
Factor A
Level 2 3 6

yi ⋅⋅⋅⋅⋅⋅⋅⋅

y⋅ j ⋅ y⋅1 ⋅ y⋅2 ⋅ y⋅3 ⋅ y⋅4 ⋅ y⋅⋅⋅

yij ⋅ .

yi ⋅⋅

yi ⋅⋅
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Figure 9.2. Therefore, in a two-factor experiment, we can test the main effects
of A and B and the interaction between A and B.

Let α i represent the effect of level i of factor A and βj the effect of level j of
factor B on the response variable. Then,

(9.41)

and its estimate is 

 (9.42)

and

(9.43) 

FIGURE 9.1
Presence of interaction effects.

FIGURE 9.2
Absence of interaction effects.

6

4

3

 A1                       A 2

Response Variable

Level 2 of B (B 2)

Level 1 of B (B 1)

A

 A1                       A 2

Response Variable

Level 2 of Factor B (B 2)

Level 1 of Factor B (B 1)

A

α i µi ⋅ m–=

a
i yi ⋅⋅ y⋅⋅⋅–=

β j µ⋅ j m–=
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and its estimate is

(9.44)

As µij measures the combined effects of means  and  on the response
variable, it can be written as:

(9.45)

if there is no interaction between level i of factor A and level j of factor B. On
the other hand, if there is interaction between level i of factor A and level j of
factor B, it has to be the difference between the left-hand and right-hand sides
of Eq. (9.45):

(9.49)

where (αβ )ij denotes the interaction between level i of A and level j of B. This
is estimated by:

(9.47)

It can be seen that a reasonable linear model in the two-factor experiment is 

yijk = µ + α i + βj + (αβ )ij + eijk (9.48)

where eijk is the error equal to yijk − µij and its estimate is 

9.4.1.3 Partitioning of the Total Sum of Squares

In two-factor experiments, the observation yijk can be written as:

(9.49) 

Hence,

(9.50)

β̂i y⋅ j ⋅ y⋅⋅⋅–=

µi ⋅ µ⋅ j

mij µ µi ⋅ µ–( ) µ⋅ j m–( )+ +=

αβ( )ij µij µ–( ) µi ⋅ µ–( )– µ⋅ j m–( )–=

 µij µi ⋅ µ⋅ j– µ+–=

αβ( )ij yij ⋅ yi ⋅⋅– y⋅ j ⋅ y⋅ ⋅ ⋅+–=

)

yijk yij ⋅–( ).

yijk yijk yij ⋅ yij ⋅ yi ⋅ ⋅ yi ⋅ ⋅ y⋅ j ⋅– y⋅ j ⋅ y⋅ ⋅ ⋅ y⋅ ⋅ ⋅ y⋅ ⋅ ⋅ y⋅ ⋅ ⋅+–+–+ +–+–=

yijk y⋅ ⋅ ⋅–( ) yijk yij ⋅–( ) yi ⋅ ⋅ y⋅ ⋅ ⋅–( ) y⋅ j ⋅ y⋅ ⋅ ⋅–( ) yij ⋅ yi ⋅ ⋅ y⋅ j ⋅– y⋅ ⋅ ⋅+–( )+ + +=

 êijk α̂ i β̂ j (α �b ) ij+ + +=

yijk y⋅ ⋅ ⋅–( )2

k=1

n

∑
j=1

b

∑
i=1

a

∑ yijk yij ⋅–( )2

k=1

n

∑
j=1

b

∑
i=1

a

∑ bn yi ⋅ ⋅ y⋅ ⋅ ⋅–( )2

i=1

a

∑+=

 an y⋅ j ⋅ y⋅ ⋅ ⋅–( )2

j=1

b

∑ n yij ⋅ yi ⋅ ⋅ y⋅ j ⋅– y⋅ ⋅ ⋅+–( )2

j=1

b

∑
i=1

a

∑+ +
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All the other terms are equal to zero. In Eq. (9.50), the expression on the left-
hand side is the sum of squares total (SST), the first term on the right-hand
side is the sum of squares due to error (SSE), the second term is the sum of
squares due to factor A (SSA), the third term is the sum of squares due to factor
B (SSB), and the last term is the sum of squares due to the interaction between
A and B (SSAB). Hence, Eq. (9.50) can be written as:

SST = SSE + SSA + SSB + SSAB  (9.51) 

This partitioning of SST is shown in Figure 9.3.
Simpler formulas for computing the sums of squares are given below:

(9.52) 

(9.53) 

(9.54)

(9.55) 

SSE = SST − (SSA + SSB + SSAB) (9.56)

The hypotheses tested in a two-factor experiment are as follows:

• Effect of factor A:
H0: α1 = α2 = ⋅⋅⋅ = αa.
H1: α i ≠ α j for some i and j.

• Effect of factor B:
H0: β1 = β2 = ⋅⋅⋅ = βb.
H1: βi ≠ βj for some i and j.

FIGURE 9.3
Partitioning of SST.

                           SST

SSA SSB SSAB SSE

SST yijk
2 y⋅ ⋅ ⋅

2

abn
---------–

k=1

n

∑
j=1

b

∑
i=1

a

∑=

SSA
Σi=1

a yi ⋅ ⋅
2

bn
----------------

y⋅ ⋅ ⋅
2

abn
---------–=

SSB
Σi=1

b y⋅ j ⋅
2

an
----------------

y⋅ ⋅ ⋅
2

abn
---------–=

SSAB
Σi=1

a Σ j=1
b yij ⋅

2

n
---------------------------

y⋅ ⋅ ⋅
2

abn
---------– SSA SSB––=
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• Effect of Interaction between A and B:
H0: All (αβ )ij = 0.
H1: At least one (αβ )ij ≠ 0.

The degrees of freedom, mean squares, and test statistics are summarized in
Table 9.8. Let us now return to Example 9.4 and the necessary calculations:

SST = 52 + 72 + ⋅⋅⋅ + 62 + 62 −  = 79.33.

SSA =  = 25.33.

SSB =  = 0.67.

SSAB =  − 25.33 – 0.67 = 27.33.

SSE = 79.33 − (25.33 + 0.67 + 27.33) = 26.

The ANOVA results are given in Table 9.9. The effect of temperature on ten-
sile strength is significant at α = 0.05. The effects of composition (B) and inter-
actions are not significant.

TABLE 9.8

Summary of Test Statistics

Sum of Squares
Degrees of 
Freedom Mean Square

Test Statistic 
(Critical Value)

SST abn − 1 — —
SSA (effect of A) a − 1 MSA 

= SSA/(a − 1)
 MSA/MSE 

(Fα[(a − 1), ab(n − 1)])
SSB (effect of B) b − 1 MSB 

= SSB/(b − 1)
MSB/MSE

(Fα[(b − 1), ab(n − 1)])
SSAB (effect of 
interaction 
between A and B)

(a − 1)(b − 1) MS(AB) 
= SSAB/((a − 1)(b − 1))

MSAB/MSE
(Fα[(a − 1)(b − 1), ab(n − 1)])

SSE  ab(n − 1) MSE 
= SSE/(ab(n − 1))

—

TABLE 9.9

ANOVA for Example 9.4

Source of 
Variation

Sum of
Squares

Degrees of
Freedom

Mean 
Square Computed F

F from Table A.3
(αααα ==== 0.05)

Temperature (A) 25.33 3 − 1 = 2 12.67 5.84a 3.89
Composition (B) 0.67 4 − 1 = 3 0.22 <1
Interaction (AB) 27.33 6 4.56 2.10 3.49
Error 26.00 23 − 11 = 12 2.17 —
Total 79.33 24 − 1 = 23 — —
a Indicates significance at α = 0.05.

1282

24
-----------

442 322 522+ +
4 2×

------------------------------------- 1282

24
-----------–

312 312 332 332+ + +
3 2×

--------------------------------------------------- 1282

24
-----------–

122 82 122 ⋅⋅⋅ 162 122+ + + + +
2

------------------------------------------------------------------------- 1282

24
-----------–
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9.4.2 Without Replications 

Example 9.5
Let us assume that in Example 9.4 the experimenter could not replicate the
experiment and there is only one observation for each of the 12 combinations
of the levels of A and B. Table 9.10 contains the observations. Necessary cal-
culations include:

SST = 52 + 32 + ⋅⋅⋅ + 72 + 62 −  = 40.92.

SSA =  = 20.67.

SSB =  = 5.58.

SSAB = 52 + 32 + ⋅⋅⋅ + 72 + 62 −  − 20.67 – 5.58 = 14.67.

SSE = 40.92 − (20.67 + 5.58 + 14.67) = 0.

We need SSE and MSE to perform ANOVA. Here, there is no alternative
except to assume that the interaction between A and B is negligible and to use
SSAB as SSE. The resulting ANOVA is given in Table 9.11.

TABLE 9.10

Data for Example 9.5

Temperature (A)
 Composition (B) Row 

Total5% 8% 11% 14%

600°F 5 3 8 7 23
650°F 3 4 2 4 13
700°F 7 5 7 6 25
Column total 15 12 17 17 61

TABLE 9.11

ANOVA for Example 9.5

Source of Variation
Sum of
Squares

Degrees of
Freedom

Mean 
Square Computed F

F from 
Table A.3 
(αααα ==== 0.05)

Temperature (A) 20.67 2 10.34 4.22 5.14
Composition (B) 5.58 3 1.86 <1
Interaction (AB)  — — — —  
Error 14.67 6 2.45 —
Total 40.92 11 — —

612

12
--------

232 132 252+ +
4

------------------------------------- 612

12
--------–

152 122 172 172+ + +
3

--------------------------------------------------- 612

12
--------–

612

12
--------
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None of the effects is significant at α = 0.05. The advantage of having more
than one replication can be seen in this example. At least two replications for
at least one combination are necessary for obtaining an explicit sum of square
due to error.

9.4.3 Approximate Percentage Contributions of Effects and Error

The following formulas are used for computing the approximate percentage
contribution of each effect (main factor or interaction) to the variability of the
response variable:7

(9.57) 

where U = A, B, or AB (any main factor or interaction). This percentage is set
to 0 if MSU < MSE.

(9.58)

In Example 9.4,

Error = 100 − [26.5 + 18] = 55.5%.

A large percentage of contribution by error indicates possible changes in the
levels of signal factors not controlled during the experiment and �or large
inherent variation in the process due to noise variables.

9.4.4 Confidence Intervals

100(1 − α)% confidence interval for the mean of response variable
at level i of factor A:

(9.59)

% contribution of U MSU MSE–
SST

-------------------------------- DF U( ) 100××=

% contribution of  error 100 sum of % contributions of all(–=

main factors and interactions )

A 12.67 2.17–
79.33

------------------------------ 2 100×× 26.5%.= =

B 0.22 2.17–
79.33

--------------------------- 2 100×× 0 0%.→<=

AB 4.56 2.17–
79.33

--------------------------- 6 100×× 18.0%.= =

yi ⋅⋅ tα
2
---

ab n 1–( )[ ] MSE
bn

------------±
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100(1 − α)% confidence interval for the mean of response variable
at level j of factor B:

(9.60)

100(1 − α)% confidence interval for the cell mean of response vari-
able at level i of A and level j of factor B:

(9.61) 

9.5 Nested Factor Designs

9.5.1 Description 

In standard factorial treatment designs, each level of every factor occurs with
all levels of the other factors. In such designs with more than one replication,
all the interaction effects can be studied. In a nested design, the levels of one
factor (for example, factor B) are similar but not identical for different levels
of another factor (say, A). These are also called hierarchical designs. 

Example 9.7
A company is interested in testing whether there is any difference among the
percentage of defects produced on the three machines (1, 2, and 3) on the
shop floor. They use a nested design with six operators—b1, b2, b3, b4, b5, and
b6—who operate the machines and two replicates. (See Figure 9.4.) Observa-
tion yijk is the kth replicate, k = 1 and 2, on machine i, i = 1, 2, and 3, with oper-
ator j, j = b1, b2, b3, b4, b5, and b6. This is a two-stage nested design. If there are
an equal number of levels of B within each level of A and an equal number of
replicates, then the design is a balanced nested design. The effects that can be
tested in this design are the effect due to machines (factor A) and the effect of
operators nested within the machines (B/A). The error term is nested within
levels of A and B. In this design, the interaction between A and B cannot be
tested because every level of B does not appear with every level of A.

The linear model for this design is 

yijk = µ + α i + βj(i) + ek(ij)  (9.62)

where µ is the grand mean, α i is the effect of level i of factor A, βj(i) is the effect
of level j of factor B nested within level i of factor A, and ek(ij) is the error nested

y⋅ j ⋅ tα
2
---

ab n 1–( )[ ] MSE
an

------------±

yij ⋅ tα
2
---

ab n 1–( )[ ] MSE
n

------------±
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within levels i of A and j of B. Replacing the parameters in Eq. (9.62) by their
respective estimators yields:

(9.63)

We assume that the observations yijk are independent and normally distrib-
uted with a mean of µij and a variance of σ2.

An example of three-stage nested design is shown in Figure 9.5.

9.5.2 Analysis

9.5.2.1 Sums of Squares

Let the number of levels of factor A be a, the number of levels of B nested
under each level of A be b, and the number of replications be n. The sums of
squares and the associated degrees of freedom are as follows.

The total sum of squares is

(9.64)

and it has (abn − 1) degrees of freedom.

FIGURE 9.4
Nest design with two factors.

FIGURE 9.5
Nested factor design with three factors.

Machine 1 Machine 2 Machine 3

Op. b1  Op.  b2 Op. b3     Op. b    4 Op. b5       Op. b6�
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           2
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yijk y⋅⋅⋅ yi ⋅⋅ y⋅⋅⋅–( ) yij ⋅ yi ⋅⋅–( ) yijk yij ⋅–( )+ + +=

SST yijk y⋅⋅⋅–( )2

k=1

n

∑
j=1

b

∑
i=1

a

∑ yijk
2 y⋅⋅⋅

2

abn
---------–

k=1

n

∑
j=1

b

∑
i=1

a
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The sum of squares due to factor A is

(9.65)

 

and it has (a − 1) degrees of freedom.
The sum of squares due to B nested within A is

(9.66) 

and it has a(b − 1) degrees of freedom.
The sum of squares due to error is computed as:

SSE = SST − [SSA + SS(B/A)]  (9.67)

which has ab(n − 1) degrees of freedom.
The mean squares and test statistics are obtained in a manner similar to

those used in earlier designs.
Let us add data to Example 9.6 (see Figure 9.6). Analyze the data and draw

conclusions at a 5% significance level (a = 3, b = 2, n = 2).

FIGURE 9.6
Data for Example 9.6.

SSA bn yi ⋅⋅ y⋅⋅⋅–( )2

i=1

a

∑ Σi=1
a yi ⋅⋅

2

bn
----------------

y⋅⋅⋅
2

abn
---------–= =

SS B/A( ) n yij ⋅ yi ⋅⋅–( )2

j=1

b

∑
i=1

a

∑ Σi=1
a Σ j=1

b yij ⋅
2

n
-----------------------------

yi ⋅⋅
2

bn
--------–= =

Machine 1 Machine 2 Machine 3

Op. b1    Op.  b2      Op. b3     Op. b4 Op. b5              Op. b6

y ijk        5   2    1

       3   1           4

yij. 13    6

8 2 0

45 4

4 8 3     5

y
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9.5.2.2 Calculations

SST = 52 + 82 + 42 + 22 + … + 12 + 42 −  = 54.25.

SSA =  = 15.5.

SS(B/A) =  = 17.25.

The ANOVA results are given in Table 9.12. There is no difference among the
number of defectives generated by the machines. Also, there is no difference
among operators nested within each machine. In a nested experiment, the fac-
tors tested could be fixed or random or a combination of both. While, the com-
putation of the sums of squares and the test statistics do not change whether
these factors are fixed or random, the interpretation of the results depend
upon the types of factors.

9.5.3 Staggered Nested Designs to Equalize Information About Variances

The nested factor design contains more information on factors at lower levels
in the hierarchy of the design than at higher levels because of the larger
degrees of freedom. In larger studies, the discrepancies in degrees of freedom
among sources of variation can be considerable. Staggered nested designs
were developed to equalize the degrees of freedom for the mean squares at
each level of the hierarchy. The staggered designs have unequal numbers of
levels for factors that are nested within other factors. The levels for factor B
nested within factor A are varied from one level of factor A to another in such
a way that the degrees of freedom for MSA and MS (B/A) are more equal.

Example 9.7
A staggered nested design is given in Figure 9.7. The degrees of freedom
(machine) = 2. For three operators/machines, the degrees of freedom
(operators�machines) = 2 + 2 + 2 = 6. In the above design, the degrees of free-
dom (operators�machines) = 2 + 1 + 1 = 4.

TABLE 9.12

ANOVA for Example  9.6

Source of Variation
Sum of 
Squares

Degrees of 
Freedom

Mean 
Square Computed F

F from 
Table A.3 
(αααα ==== 0.05)

Machines 15.5 2 7.75 2.16 5.14
Operators within 
machines

17.25 3 5.75 1.61 4.76

Error 21.5 6 3.58  —  
Total 54.25 12 − 1 = 11 — —

392

12
--------

192 122 82+ +
4

---------------------------------- 392

12
--------–

132 62 42 82 32 52+ + + + +
2

----------------------------------------------------------------- 192 122 82+ +
4

----------------------------------–
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9.6 2k Factorial Experiments

9.6.1 Analysis 

As the number of experiments (combinations) in a full factorial experiment is
very large when the number of factors included in the experiment increases,
it is common to use two levels for each factor studied. If the effect of a factor
on the response variable is nonlinear, then selecting only two levels might
miss the minimum or maximum effect. If there are k factors set at two levels
each, then the total number of combinations is 2k; therefore, these designs are
called 2k designs. The two levels of a factor are called low and high, even
though this notation may be arbitrary in the case of qualitative factors (such
as cleaning method or type of raw material). The other notation used to
denote the levels are

Example 9.8
An experiment with three factors is conducted to test the effect of wing length
(A), body width (B), and tail length (C) on the descent time of a paper heli-
copter. The levels of these three factors are as follows:

FIGURE 9.7
Staggered nested design.

Low High

− +
1 2

Low High

Wing length (A) 1" (−−−−) 11�12" (++++)
Body width (B) 1" (−−−−) 13�8" (++++)
Tail length (C) 1" (−−−−) 11�2" (++++)

Machine 1 Machine 2 Machine 3

Op. A Op. B   Op. C Op. D   Op. E   Op. F       Op. H
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The experiment was replicated twice, and the data are given in Table 9.13.
The possible effects that can be studied in this experiment are the main factors
A, B, and C and interactions AB, AC, BC, and ABC. The linear model for this
design is

yijkl = µ + α i + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + (αβγ)ijk + eijkl (9.68)

In Eq. (9.68), yijkl is the lth observation at the ith level of A, jth level of B, and
kth level of C. Also, µ is the grand mean; α i, βj, and γk are, respectively, the
effects of level i of main factor A, level j of main factor B, and level k of main
factor C; (αβ )ij, (αγ)ik , and (βγ)jk are, respectively, the effects of the appropriate
levels of the two factor interactions AB, AC, and BC; (αβγ)ijk is the effect of the
appropriate level of the three-factor interaction ABC; and eijkl is the error. 

The observations are given in Table 9.14 with “−” representing low levels
and “+” representing high levels. The signs in an interaction column are
obtained by multiplying the signs in the associated columns of the main factors.

The sum of squares total (SST) is computed using the same formula used
earlier. Because, in this design, each factor is set at two levels only, the formulas

TABLE 9.13

Data for Example 9.8

A 
(inches)

B 
(inches)

C 
(inches) Replication 1 Replication 2 Total

−1 −1 −1 97 84 181
−1 −1 +11�2 63 66 129
−1 +13�8 −1 96 104 200
−1 +13�8 +11�2 72 72 144
+11�2 −1 −1 87 100 187
+11�2 −1 +11�2 75 88 163
+11�2 +13�8 −1 104 100 204
+11�2 +13�8 +11�2 59 81 160

TABLE 9.14

Rearranged Data for Example 9.8

A B C AB AC BC ABC Obs. 1 Obs. 2 Total

− − − + + + − 97 84 181
− − + + − − + 63 66 129
− + − − + − + 96 104 200
− + + − − + − 72 72 144
+ − − − − + + 87 100 187
+ − + − + − − 75 88 163
+ + − + − − − 104 100 204
+ + + + + + + 59 81 140

1348
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for the sum of squares of the factors are simpler:

SST = 972 + 842 + … + 592 + 812 −  = 3417.

The sum of squares of the interactions are computed by considering “−” as
one level and “+” as the second level:

 

SSE = 3417 − (100 + 49 + 2401 + 100 + 25 + 121 + 81) = 540.00.

The ANOVA results are given in Table 9.15. Only the main factor C is signif-
icant at α = 0.05.

SS any factor( ) Sum of the observations at ”–” level( )2

Number of observations at ”–” level( )
--------------------------------------------------------------------------------------------------------=

Sum of the observations at ”+” level( )2

Number of observations at ”+” level( )
--------------------------------------------------------------------------------------------------------+

Grand sum of all the observations( )2

Total number of observations 
-------------------------------------------------------------------------------------------------– .

13482

16
--------------

SSA 187 163 204 140+ + +( )2

8
-------------------------------------------------------------- 129 181 144 200+ + +( )2

8
-------------------------------------------------------------- 1348

16
------------–+ 100.= =

SSB 144 200 204 140+ + +( )2

8
-------------------------------------------------------------- 129 181 187 163+ + +( )2

8
-------------------------------------------------------------- 13482

16
--------------–+ 49.00.= =

SSC 129 144 163 140+ + +( )2

8
-------------------------------------------------------------- 181 200 187 204+ + +( )2

8
-------------------------------------------------------------- 13482

16
--------------–+ 2401.00.= =

SS(AB) 129 181 204 140+ + +( )2

8
-------------------------------------------------------------- 144 200 187 163+ + +( )2

8
-------------------------------------------------------------- 1348

16
------------–+ 100.00.= =

SS(AC) 181 200 163 140+ + +( )2

8
-------------------------------------------------------------- 129 144 187 204+ + +( )2

8
-------------------------------------------------------------- 13482

16
--------------–+ 25.00.= =

SS(BC) 181 144 187 140+ + +( )2

8
-------------------------------------------------------------- 129 200 163 204+ + +( )2

8
-------------------------------------------------------------- 13482

16
--------------–+ 121.00.= =

SS(ABC) 129 200 187 140+ + +( )2

8
-------------------------------------------------------------- 181 144 163 204+ + +( )2

8
-------------------------------------------------------------- 13482

16
--------------–+ 81.00= =
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Let us now examine the formulas for computing the sums of squares. There
are k factors, and the number of replications is n. Then, there are 2k × n =
m observations. The number of observations at each level of each of the n
factors = m/2. Consider any main factor or interaction. Let T1 be the sum of
the observations at level “+” and T2 be the sum of the observations at level
“−”. Then, the grand sum of all the m observations is T = T1 + T2. The sum of
squares for this factor is computed as:

The quantity within the parentheses is called the contrast of this factor: 

Sum of squares for any factor or interaction = Contrast2/m  (9.69)

Effect of any main factor or interaction = Contrast/(m/2)  (9.70)

Table 9.16 contains all the contrasts and effects in Example 9.8.

TABLE 9.15

ANOVA for Example  9.8

Source of 
Variation

Sum of 
Squares

Degrees of 
Freedom

Mean 
Square Computed F

F from 
Table A.3
(αααα ==== 0.05)

A 100 1 100 1.48 5.32
B 49 1 49 <1
C 2401 1 2401 35.57 a

AB 100 1 100 1.48
AC 25 1 25 <1
BC 121 1 121 1.79
ABC 81 1 81 1.2
Error 540 8 67.5 —
Total 3417 15 — —
a Indicates significance at α = 0.05.

TABLE 9.16 

Contrasts and Effects for Example 9.8

A B C AB AC BC ABC Obs. 1 Obs. 2 Total

− − − + + + − 97 84 181
− − + + − − + 63 66 129
− + − − + − + 96 104 200
− + + − − + − 72 72 144
+ − − − − + + 87 100 187
+ − + − + − − 75 88 163
+ + − + − − − 104 100 204
+ + + + + + + 59 81 140

Contrast 40 28 −196 −40 20 −44 −36 — — —
Effect 5.0 3.5 −24.5 −5.0 2.5 −5.5 −4.5 — — —

Sum of squares T1
2 T2

2+( )/ m/2( ) T2/m–=

 T1 T2–( )2/ m=
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9.6.2 Polynomial Equation

In general, the polynomial equation in a 23 full factorial experiment is 

(9.71)

The orthogonal polynomial equation is

(9.72)

where

(9.73)

where ti = (Max. leveli + Min. leveli)/2, and di = (Max. leveli − ti). The “intercept”
α0 is the grand average of all the observations, and α i, α ij, or α ijk is equal to the
associated effect/2.

It can be seen that Xi is a coded observation taking value −1 or +1. In
Example 9.8, 

and the polynomial equation is

(9.74)

where x1 = 1 or 11�2 , x2 = 1 or 13�8, and x3 = 1 or 11�2. 
Residual and other diagnostic analyses must be performed before using the

equation for predicting the response variable within the ranges of the main
factors included in the experiment.4 The linear model, analyses, and method-
ology used in developing the equation can be easily extended to more than
three factors.

i ti di

1 11�4
1�4

2 13�16
3�16

3 11�4
1�4

ŷ a ′0 a ′1 x1 a ′2 x2 a ′3 x3 a ′12 x1x2 a ′13 x1x3 a ′23x2x3 a ′123 x1x2x3+ + + + + + +=

ŷ a0 aX1 a2X2 a3X3 a12X1X2 a ′13 X1X3+ + + + += a23X2X3 a123X1X2X3+ +

Xi
xi ti–

di
------------- 

 =

ŷ 84.25 2.5 
x1 1.25–

0.25
--------------------- 

  1.75 
x2 1.1875–

0.1875
--------------------------- 

  12.25 
x3 1.25–

0.25
--------------------- 

 –++=

2.5 
x1 1.25–

0.25
--------------------- 

  x2 1.1875–
0.1875

--------------------------- 
  1.25 

x1 1.25–
0.25

--------------------- 
  x3 1.25–

0.25
--------------------- 

 +–

2.75 
x2 1.1875–

0.1875
--------------------------- 

  x3 1.25–
0.25

--------------------- 
 –

2.25 
x1 1.25–

0.25
--------------------- 

  x2 1.1875–
0.1875

--------------------------- 
  x3 1.25–

0.25
--------------------- 

 –
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9.6.3 Factorial Experiments in Incomplete Blocks

Suppose that a trial is to be conducted using a 23 factorial design. To make the
eight runs under conditions as homogeneous as possible, it is desirable that
batches of raw material sufficient for the complete experiment for one repli-
cation be blended together. Suppose, however, that the available blender is
only large enough to accommodate material for four runs. This means that
blends mixed at two different times will have to be used. Hence, all the eight
combinations will not have “identical” blends. In this case, the 23 design
should be arranged in two blocks of four runs each to neutralize the effect of
possible blend differences. The disadvantage with such an experimental
setup is that certain effects are completely confounded or mixed with the
blocks as a result of blocking. The number of effects confounded depends on
the number of blocks required. 

9.6.3.1 Experiments with Two Blocks

One effect is confounded in an experiment with two blocks. Usually the highest
order interaction is selected to be confounded. For example, if the three-factor
interaction effect is confounded in a 23 design with two blocks, then only the
main effects and two-factor interactions can be studied in this experiment.
The method of distribution of treatment combinations between the blocks is
illustrated in the next example.

Example 9.9
Construct two incomplete blocks of a 23 design:

1. Define the effect to be confounded, called the defining contrast. In
Example 9.9, the logical defining contrast is the three-factor inter-
action, ABC.

2. Write all the 2k combinations in a table with “−” representing low
levels and “+” representing high levels. The combinations for
Example 9.9 are given in Table 9.17.

TABLE 9.17 

Design Table for Example 9.9

A B C ABC

− − − −
− − + +
− + − +
− + + −
+ − − +
+ − + −
+ + − −
+ + + +
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3. All the combinations that have the sign “−” in column ABC in
Table 9.17 belong to one block, whereas the other combinations
form the second block:

If this is to be the experiment that blends two different batches because of the
capacity of the blender, then the combinations in block 1 will have to be made
out of blend 1, and blend 2 should supply the material for the combinations
in block 2.

Example 9.10
Divide the combinations in a 24 factorial experiment into two blocks, using
ACD as the defining contrast (see Table 9.18).

9.6.3.2 Experiments with Four Incomplete Blocks

If the treatment combinations of a 2k factorial experiment is to be divided into
four incomplete blocks, then the experimenter chooses any two defining con-
trasts (those effects that will be confounded with blocks). A third effect, called
the generalized interaction of the two defining contrasts, is automatically con-
founded with the blocks. Thus, a total of three effects will be confounded
with blocks in an experiment with four incomplete blocks.

Block 1 “++++” Block 2 “−−−−”
A B C A B C

− − + − − −
− + − − + +
+ − − + − +
+ + + + + −

TABLE 9.18 

Design Table for Example 9.10

A B C D ACD
Block 1 

(“−−−−” in ACD)
Block 2

(“++++” in ACD)

− − − − − �

− − − + + �

− − + − + �

− − + + − �

− + − − − �

− + − + + �

− + + − + �

− + + + − �

+ − − − + �

+ − − + − �

+ − + − − �

+ − + + + �

+ + − − + �

+ + − + − �

+ + + − − �

+ + + + + �
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Example 9.11
Divide a 24 factorial experiment into four incomplete blocks:

1. The experimenter should choose two defining contrasts—two
effects that are to be confounded. Suppose that, in our example,
the experimenter chooses AB and CD as the defining contrasts.

2. Determine the third effect (generalized interaction) that will be
confounded by multiplying both the defining contrasts and choos-
ing the letters with odd exponents only. In this example, AB × CD =
ABCD is the generalized interaction, because each of the letters A,
B, C, and D has an exponent of one. More examples of 24 factorials
are given below:

3. Group the treatment combinations into four blocks based on the
signs in the defining contrasts selected. In this example, the blocks
are as follows (see Table 9.19):

4. The observations corresponding to the treatment combinations in
each block should be collected under identical conditions. 

9.6.4 Fractional Factorial Experiments

The 2k factorial experiment can become quite large when k is large. In many
experimental situations, it can be assumed that certain higher order inter-
actions are negligible or, even if they are not negligible, the experimenter
may not be interested in them and thus it would be a waste of experimental
effort to use the complete factorial experiment. When k is large, the experi-
menter can make use of a fractional factorial experiment in which only one
half, one fourth, or even one eighth of the total factorial design is actually
carried out.

Defining Contrasts Generalized Interaction

AB ABC C
ABD ABC CD
BCD AB ACD

AB CD Block

− − 1
− + 2
+ − 3
+ + 4
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9.6.4.1 One Half Fractional Factorial Design (Half-Replicate)

The construction of a half-replicate design is identical to the allocation of a 2k

factorial experiment into two blocks. First a defining contrast is selected that
is to be confounded, then the two blocks are constructed and either of them
is selected as the design to be carried out.

As an example, consider a 24 factorial experiment in which we wish to use
a half-replicate. The defining contrast ABCD is chosen and two blocks are as
follows:

Either block can be selected. Let us assume that the experimenter selects
block 1 and collects data for the eight combinations in that block. Table 9.20
contains these eight combinations in the block 1 experiment, with all possible
main factors and interactions in a 24 full factorial experiment. Even though
having two or more replications enables us to compute an explicit sum of
squares for error, it does not increase the number of sums of squares due to
main factors or interactions. The number of sums of squares that can be
computed (other than SST) using the above data is 8 − 1 = 7. The total number
of possible effects (main factors and their interactions) in a 24 experiment is

TABLE 9.19 

Design Table for Example 9.11

A B C D AB CD Block 1 Block 2 Block 3 Block 4

− − − − + + ∗
− − − + + − ∗
− − + − + − �

− − + + + + ∗
− + − − − + ∗
− + − + − − ∗
− + + − − − ∗
− + + + − + ∗
+ − − − − + �

+ − − + − − ∗
+ − + − − − ∗
+ − + + − + ∗
+ + − − + + ∗
+ + − + + − ∗
+ + + − + − ∗
+ + + + + + ∗

Block 1 (“++++” for ABCD) Block 2 (“−−−−” for ABCD)
A B C D A B C D

− − − − − − − + 
− − + + − − + −
− + − + − + − −
− + + − − + + +
+ − − + + − − −
+ − + − + − + +
+ + − − + + − +
+ + + + + + + −
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15, out of which interaction ABCD is not “present” in block 1, because all the
combinations in this block have the same sign, “+”. This leaves out 14 effects
that are present in the experiment, which means that each of the seven sums
of squares is shared by two effects. It can be seen from Table 9.20 that there
are seven pairs of effects (main factors and interactions) such that the effects
in each pair have the same sequence of “−” and “+” signs and the same sum
of squares. Examples of such pairs are A and BCD, B and ACD, and so on. The
effects in a pair are called aliases. The aliases in each group (pair) can be
obtained by deleting the letters with an even exponent from the product of
the effect (main factor or interaction) and the defining contrast. For example,
the alias of A is A × ABCD = A2BCD = BCD.

The aliases in this one half fractional factorial design are

A + BCD

B + ACD

C + ABD

D + ABC

AB + CD

AC + BD

AD + BC

In summary, in a one half fractional factorial design, the sum of squares of the
defining contrast cannot be computed. In addition, there are exactly two effects
(main factors and or interactions) in each alias group. If the test statistic
obtained from the sum of squares of an alias group is significant, we cannot
determine which one of the members of that group is the cause of significance
without supplementary statistical evidence. However, fractional factorial
designs have their greatest use when k is quite large and there is some previous
knowledge concerning the interactions. It becomes evident that one should
always be aware of what the alias structure is for a fractional experiment before
finally adopting the experimental plan. Proper choice of defining contrasts and
awareness of the alias structure are important considerations before an experi-
mental design is selected. The calculation of the sums of squares is done in the
same way as before, keeping in mind the above limitations.

TABLE 9.20

Treatment Combinations in Block 1

A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD

− − − − + + + + + + − − − − +
− − + + + − − − − + + + − − +
− + − + − + − − + − + − + − +
− + + − − − + + − − − + + − +
+ − − + − − + + − − + − − + +
+ − + − − + − − + − − + − + +
+ + − − + − − − − + − − + + +
+ + + + + + + + + + + + + + +
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9.6.4.2 One Quarter Fractional Factorial Design (Quarter-Replicate)

The construction of a quarter-replicate design is identical to the allocation of a
2k factorial experiment into four blocks. Two defining contrasts are specified
to partition the 2k combinations into four blocks. Any one of the four blocks
can be selected for performing the experiment and analysis. In this design, the
defining contrasts and the generalized interaction are not “present” because
each of these will have the same sign (“−” or “+”) in any block selected. 

Let us consider a one quarter fractional design of a 25 factorial, constructed
using ABD and ACE as the defining contrasts. The generalized interaction is
BCDE. In this design, ABD, ACE, and BCDE are not “present” because each of
these will have the same sign (“−” or “+”) in any of the four blocks. This leaves
out 25 − 1 − 3 = 28 effects (main factors and their interactions) that are present
in this design. As the total number of treatment combinations in this design is
1�4(25 ) = 8, only seven (8 − 1) sums of squares can be computed. This means that
each sum of squares is shared by 28/7 = 4 effects (main factors �interactions),
hence there are four aliases in each group. The aliases in each group can be
obtained by deleting the letters with even exponents from the products of any
one effect (main factor or interaction) and each defining contrast and the gen-
eralized interaction. For example, the aliases of A are

A × ABD = A2BD = BD 
A × ACE = A2CE = CE

A × BCDE = ABCDE

This means that A, BD, CE, and ABCDE share the same sum of squares, mean
squares and test statistics.

The following formulas are applicable to incomplete block designs and
fractional designs of a 2k factorial experiment. 

1. Full factorial:
Number of factors = k.
Total number of combinations in a full factorial experiment = 2k.
Total number of effects (main factors/interactions) present in a

2k full factorial experiment = 2k − 1.

2. Incomplete blocks:
Number of blocks = 2q, q = 1, 2 , …, k − 1.
Number of combinations in each block = 2k/2q = 2k−q.
Number of defining contrasts needed to generate 2q blocks = q.
Total number of effects confounded within blocks = 2q − 1.
Total number of generalized interactions = 2q − 1 − q.

3. Fractional factorial:
Fraction = 1/2q.
Notation = 2k−q.
Number of treatment combinations in the fraction = 2k−q.
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Number of sums of squares that can be computed = 2k−q − 1.
Number of effects (due to main factors �interactions) that are

present in the design = 2k − 2q.
Number of alias groups (one sum of squares per each alias

group) = 2k−q − 1. 
Number of aliases in each group = 2q.

9.6.4.3 Construction of Fractional Factorial Designs

The type of alias relationship present in a fractional factorial design is defined
by its resolution.

1. Resolution III designs: In this type of designs, 
• No main factor is aliased with any other main factor.
• Main factors are aliased with two-factor interactions. 
• Two-factor interactions are aliased with other two-factor inter-

actions.
Examples include 23−1 and 25−2 designs. 

2. Resolution IV designs: These are the designs in which:
• No main factor is aliased with either another main factor or a

two-factor interaction.
• Two-factor interactions are aliased with other two-factor inter-

actions.
Examples include 24−1 and 26−2 designs.

3. Resolution V designs: In these designs,
• No main factor is aliased with either another main factor or a

two-factor interaction.
• No two-factor is aliased with other two-factor interactions.
• Two-factor interactions are aliased with three-factor interactions.
Examples include 25−1 and 26−1 designs.

Table 9.21 contains recommended defining contrasts for selected fractional
factorial designs and the resulting resolutions. For more designs, please refer
to Montgomery.3

A basic design is a 2a full factorial design where a = k − q. For example, the basic
design of a 27−3 fractional factorial design is a 24 full factorial design. The number
of rows (treatment combinations) in a 2k−q fractional factorial design is equal to
the number of rows (treatment combinations) in the associated basic design.

9.6.4.4 Steps in the Construction of a Fractional Factorial Design 

1. Based on the number of factors to be tested (included in the exper-
iment) and the resolution desired and �or the maximum number
of feasible experiments, select a fractional factorial design from
Table 9.21.



Example 9.12
An experiment is to be conducted to test the effect of seven factors on some
response variable. The experimenter is satisfied with Resolution III. It is a 27−4

fractional design. 

2. Select the defining contrast(s) from Table 9.21. From Table 9.21, the
recommended defining contrasts for Example 9.12 are ABD, ACE,
BCF, and ABCG.

3. Start with the basic design, which is a 2a full factorial design where
a = k − q. Table 9.21 contains the signs for the first a = k − q factors
in the fractional design. In Example 9.12, the basic design is 23 full
factorial, given in Table 9.22, which contains signs for factors A, B,
and C in the 27−4 fractional design.

4. Using the alias relationship, identify the columns for the remaining
q factors. In Example 9.12, 

One alias of D is D × ABD = AB (D and AB share the same column).
One alias of E is E × ACE = AC (E and ACE share the same column).
One alias of F is F × BCF = BC (F and BCF share the same column). 
One alias of G is G × ABCG = ABC (G and ABC share the same

column).

TABLE 9.21 

Recommended Defining Contrasts for Selected Fractional Factorial Designs

Number of 
Factors (k)

Fractional 
Design (2k−−−−q) Resolution

Number of 
Experiments/Treatment 

Combinations Defining Contrasts

3 23−1 (1/2) III 4 ABC
4 24−1 (1/2) IV 8 ABCD
5 25−2 (1/4) III 8 ABD,ACE

25−1 (1/2) V 16 ABCDE

6 26−3 (1/8) III 8 ABD, ACE, BCF
26−2 (1/4) IV 16 ABCE, BCDF

7 27−4 (1/16) III 8 ABD, ACE, BCF, ABCG
27−3 (1/8) IV 16 ABCE, BCDF, ACDG
27−2 (1/4) IV 32 ABCDF, ABDEG

8 28−4 (1/16) IV 16 BCDE, ACDF, ABCG, 
ABDH

28−3 (1/8) IV 32 ABCF, ABDG, BCDEH

9 29−5 (1/32) III 16 ABCE, BCDF, ACDG, 
ABDH, ABCDJ

29−4 (1/16) IV 32 BCDEF, ACDEG, 
ABDEH, ABCEJ

29−3 (1/8) IV 64 ABCDG, ACEFH, CDEFJ
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Table 9.22 is modified by replacing column headings AB, AC, BC, and ABC by
D, E, F, and G, respectively, resulting in the final 27−4 fractional factorial
design, given in Table 9.23. In real-life applications, signs “+” and “−” in the
design table are replaced by the actual levels of the factors. 

Example 9.13
Table 9.24 contains the log sheet of an experiment conducted to test the effects
of seven factors on the hardness of a powdered metal component:

TABLE 9.22

Basic Design for Example 9.12

A B C AB AC BC ABC

− − − + + + −
− − + + − − +
− + − − + − +
− + + − − + −
+ − − − − + +
+ − + − + − −
+ + − + − − −
+ + + + + + +

TABLE 9.23 

27−4 Fractional Factorial Design for Example 9.12

A B C D E F G

− − − + + + −
− − + + − − +
− + − − + − +
− + + − − + −
+ − − − − + +
+ − + − + − −
+ + − + − − −
+ + + + + + +

A Material composition 5% (−) and 10% (+)
B Binder type 1 (−) and 2 (+)
C Position in the basket Bottom (−) and top (+)
D Heat treatment temperature 800°F (−) and 900°F (+)
E Quenching bath medium Water (−) and oil (+)
F Annealing temperature 300°F (−) and 400°F (+)
G Speed of conveyor belt 

in annealing oven
2 feet � minute (−) and 4 feet� minute (+)
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Example 9.14
One quarter of a 25 factorial experiment (25−2) was conducted to test the effects
of the following five factors on the descent time of a paper helicopter:

The defining contrasts are ABD and ACE with Resolution III. Table 9.25 con-
tains the observations collected in the experiment, which was replicated
twice. The generalized interaction is BCDE. There are seven alias groups with
four effects (main factors and interactions) in each group. Table 9.26 contains
the ANOVA for this problem.

TABLE 9.24

Log Sheet of the 27−4 Fractional Factorial Experiment in Example 9.13

D
 A

Material 
Composition 

(%)

B 
Binder 
Type

 C
Position 

in Basket

 Heat 
Treatment  

Temperature 
(°°°°F)

 
E 

Quenching 
Bath

 F
Annealing 

Temperature 
(°°°°F)

 G
Speed of 
Conveyor 

(fpm)

5 1 Bottom 900 Oil 400 2 
5 1 Top 900 Water 300 4 
5 2 Bottom 800 Oil 300 4 
5 2 Top 800 Water 400 2 

10 1 Bottom 800 Water 400 4 
10 1 Top 800 Oil 300 2 
10 2 Bottom 900 Water 300 2 
10 2 Top 900 Oil 400 4 

TABLE 9.25 

Data for Example 9.14

A B C D E Replication 1 Replication 2 Total

− − − + + 71 72 143
− − + + − 106 100 206
− + − − + 59 62 121
− + + − − 91 94 185
+ − − − − 122 119 241
+ − + − + 91 94 185
+ + − + − 131 119 250
+ + + + + 85 69 154

A  Wing length 1" (−) and 11�2 " (+)
B  Body width 1" (−) and 13�8 " (+)
C  Tail length 1" (−) and 11�2" (+)
D  Paper type 1 (−) and 2 (+)
E  Ballast Without (−) and with (+)
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9.6.4.5 Conclusions 

The main effects A, B, and E and their aliases are significant at α = 0.05. In the
absence of additional evidence, it is not possible to ascertain which of the
effects in a particular alias group is (are) significant. Usually, the main effects
are presumed to cause significance in an alias group.

Equations relating the significant main factors and interactions to the
response variables can be developed using regression methods or the poly-
nomial equation method, described earlier in this chapter. Assuming that A,
B, and E are the only significant factors, the following polynomial equation is
developed for Example 9.14:

(9.75)

where X5 = −1 when used without ballast and 1 when used with ballast.
After developing appropriate equations, the levels of the factors that opti-

mize the response variable can be determined using response methodology
or the desirability function approach.6

9.6.5 Addition of Center Points to the 2k Design

A major problem in using a 2k factorial design is the assumption of linearity
in the effect of signal factors on the response variables. An experiment with
three levels for the factors suspected to have a nonlinear effect on the
response variable (for example, 3k factorial experiment) can be used to remedy

TABLE 9.26

ANOVA for Example 9.14

Source of 
Variation 

Sum of 
Squares

Degrees of 
Freedom

Mean 
Square Computed F

F from 
Table A.3 
(αααα ==== 0.05)

A + BD + CE 
+ ABCDE

1914.06 1 1914.06 64.86a 5.32

B + AD + CDE
+ ABCE

264.06 1 264.06 8.95a

C + AE + BDE
+ ABCD

39.06 1 39.06 1.32

D + AB + BCE
+ ACDE

27.56 1 27.56 <1

E + AC + BCD 
+ ABDE

4865.06 1 4865.06 164.8a

BC + DE + ABE
+ ACD

95.06 1 95.06 3.22

BE + CD + ABC 
+ ADE

105.06 1 105.06 3.56

Error 236.05 8 29.51
Total 7546.44 15
a Indicates significance at α = 0.05.

ŷ 92.81 10.94 
x1 1.25+

0.25
---------------------- 

  4.06 
x2 1.1875+

0.1875
---------------------------- 

  17.44X5,––+=
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this problem. Adding a center point to a 2k factorial experiment can also take
care of this problem with a 2k factorial experiment. Replicating the center
point also provides an independent estimate of error.

Example 9.15
Consider a 22 factorial design in our paper helicopter design problem. Let the
two signal factors be the wing length (A) and body width (B). The following
are the data for one replicate:

If we want to test for the nonlinear effect of the factors on the descent time,
then we can add a center point to this design as shown in Figure 9.8. Let us
assume that the center point is replicated four times and the readings are 55,
56, 58, and 58. As the center point is replicated four times, the MSE is com-
puted using only the four observations at this point:

MSE = SSE/(nc − 1) (9.76) 

where nc is the number of replications at the center point, and 

(9.77) 

where  is mean of replications at the center point.

Wing Length (A)
Body Width (B) 1" (−−−−) 11�2 " (++++)

1" (−) 63 87
13�8" (+) 72 104

FIGURE 9.8
Addition of center point.

SSE yi yc–( )2

i�1

nc

∑=

yc

Wing Length  (A)

1" (—) 1 1/2"  (+)

Body Width (B) 1"  (—) 63 87

¥ Center Point

     1 3/8 "  (+) 72 104

B → 1 3/16 " 

A → 1 1/4 " 
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In Example 9.15,  = (55 + 56 + 58 + 58)/4 = 56.75, SSE = (55 − 56.75)2 +
(56 − 56.75)2 + (58 − 56.75)2 + (58 − 56.75)2 = 6.75, and MSE = 6.75 /(4 − 1) = 2.25.

The sum of squares due to curvature is computed as:

(9.78)

where  is the average of all observations, excluding replications at the cen-
ter point, and nf is the total number of observations, excluding replications at
the center point. In Example 9.15,  = (63 + 87 + 72 + 104)/4 = 81.5, and

The other sums of squares (SST, SSA, SSB, SSAB, and SSE) are computed as
in any 2k design. The ANOVA results are given in Table 9.27.

It can be seen that both the main factors and the curvature effect are signif-
icant at α = 0.05. A more detailed experiment with more levels of A and B is
required to capture the potential nonlinear effects of A and B on the response
variable.

9.7 Taguchi’s Orthogonal Arrays

Taguchi simplified the procedure used in the design of fractional factorial
experiments by constructing orthogonal arrays (refer to Taguchi7 and
Phadke5 for details of the arrays). His orthogonal arrays are fractional facto-
rial designs of two levels, three levels, and mixtures of two, three, four, and
five levels. The arrays are denoted by La, where a is the number of rows in the

TABLE 9.27

ANOVA for Example 9.15

Source of
Variation

Sum of 
Squares

Degrees of 
Freedom

Mean 
Square

Computed 
F

F from 
Table A.3 
(� ==== 0.05)

A 784 1 784 348.44a 10.13
B 169 1 169 75.11a

AB 16 1 16 7.11
Curvature 1225.13 1 1225.13 555.56a

Error 6.75 4 − 1 = 3 2.25
Total 2200.88 7
a indicates significance at α = 0.05.

yc

SSCURVATURE
n f nc y f yc–( )2

n f n+ c( )
----------------------------------=

y f

y f

SSCURVATURE
4 4× 81.5 56.75–( )2×

4 4+( )
------------------------------------------------------- 1225.13= =
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array and indicates the number of experiments that need to be performed for
that array. For example, an L8 array has eight rows and L9 has nine rows. The
L8 array can be used as a 2k−q fractional factorial design for any k and q such
that, k − q = 3. From Section 9.6.4, we know that the basic design of a 2k−q frac-
tional factorial design is a 2k−q full factorial design. Hence, the L8 array can be
considered a basic design for all 2k−q fractional factorial designs, with k − q = 3.
Consider the 23 full factorial design given in Table 9.28, which has no column
headings. Each column is assigned to a factor. Without column headings, we
can assign any column to any factor, keeping in mind the columns that contain
the interactions of other columns. This is important in fractional factorial
designs, because of the presence of alias groups. Taguchi addressed the inter-
actions in tables and graphs.7 His L8 design can be obtained from the basic
design in Table 9.28 by reversing the order of rows; replacing “+” and “−” by 1
and 2, respectively, and interchanging columns 3 and 4. Similarly, the L16 ,
L32 , and L64 arrays are basic designs for all 2k−q fractional factorial designs with
k and q such that k − q = 4, 5, and 6, respectively.

Taguchi developed other types of orthogonal arrays that are difficult to
design using classical design of experiments methodology. For example the
L18 array has one column with two levels and seven columns with three levels.
The advantage in using these arrays is that the experimenter can test several
factors with unequal levels using very few experiments. The main disadvan-
tage in such arrays is that it is impossible to test the effects of any interaction.
The only option the experimenter has is to assume that all the interaction
effects are negligible, which may not be true in many real-life situations.

9.8 Design of Experiments Methodology

Barton1 presents an excellent discussion on the methodology to be used in the
design of experiments; the flow chart in Figure 9.9 is a summary of the steps
to be used.

TABLE 9.28 

23 Basic Design 

− − − + + + −
− − + + − − +
− + − − + − +
− + + − − + −
+ − − − − + +
+ − + − + − −
+ + − + − − −
+ + + + + + +
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FIGURE 9.9
Design of experiments methodology.
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9.10 Problems

1. A manufacturer in the steel industry wants to test the effect of the
method of manufacture on the tensile strength of a particular type
of steel. Four different methods have been tested, and the data
shown in Table 9.29 have been collected. Test the significance of
the effect at α = 0.05.

2. Data have been collected to test whether the thickness of a polysili-
con coating depends upon the deposition temperature (see Table 9.30).
Test whether there is any difference in the thickness at different
temperature levels at α = 0.05. 

3. Prove that 

TABLE 9.29

Data for Problem 1

Method Tensile Strength

1  2650 2765 2750 2600
2  2985 2975 2865 2890
3  2775 2620 2690 2700
4  2900 2885 2850 2950

TABLE 9.30

Data for Problem 2

Deposition Temperature Polysilicon Thickness (Coded Data)

Level 1 110 112 109 115
Level 2 105 99 100 103
Level 3 115 120 109 117
Level 4 102 110 108 102

�i�1
t � j�1

r yi ⋅ y⋅⋅–( ) yij yi ⋅–( ) 0.=
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4. The management wants to test whether there is any difference in
the output of operators on the shop floor. Four operators were
selected at random from the shop floor, and the data in Table 9.31
represent the output of the operators. Conduct an ANOVA at
α  = 0.01. Estimate the variance due to the operators.

5. A chemical engineer has reason to believe that the batches of raw
material used in the manufacture of a compound differ signifi-
cantly in the nitrogen content. Currently, the company uses many
batches; for his study, the engineer randomly selected five of these
batches and recorded three observations on each batch. The data
in Table 9.32 were obtained. Conduct an ANOVA at α = 0.01.
Estimate the variance due to batches.

6. A two-factor experiment was conducted to test whether the given
factors affect the response variable. The data shown in Table 9.33
were collected for three levels of A and three levels of B with four
replicates.

TABLE 9.31 

Data for Problem 4

Operators
1 2 3 4

Output 90 130 125 150
100 145 140 145
95 120 135 135
80 135 140 160

TABLE 9.32

Data for Problem 5

Batches
1 2 3 4 5

8.5 8.4 8.4 8.5 8.9
8.6 8.5 8.9 8.4 8.6
8.2 8.3 8.2 8.2 8.2

TABLE 9.33

Data for Problem 6

Factor B
Factor A

600 650 700

1 142 113 115 129 135 120
126 130 109 98 115 110

2 122 104 112 104 144 132
118 138 100 119 120 139

3 110 126 122 100 142 130
138 120 118 109 110 125
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a. Using α = 0.05, test for the significance of all possible effects.
b. Estimate the percentage contributions of all possible effects and

the error.
7. An engineer suspects that the cutting speed (in inches) and the

feed rate (inches�minute) influence the surface finish of a metal
part. For this study, the engineer collected four cutting speeds and
three feed rates and conducted a two-factor experiment to obtain
the data shown in Table 9.34 with three replications. 
a. Conduct an ANOVA at α = 0.05 to test the significance of all

possible effects.
b. Estimate the percentage contributions of all the possible effects

and the error.
8. An experiment was performed to assess the effect of engine oil on

the life of lawn mower engines. The data shown in Table 9.35
(engine life in hours which are coded) was collected. There are two
replications. Conduct an ANOVA to test all possible effects in this
experiment. Use α = 0.01.

9. The effects of cutting speed and feed on the surface finish of a
component were investigated in a two-factor experiment. Each
factor was set at two levels and two observations were collected
for each of the four combinations. The coded observations are
shown in Table 9.36.
a. Conduct an ANOVA at α = 0.05 and test for all possible effects.
b. Calculate the percentage contribution of all the effects.

TABLE 9.34 

Data for Problem 7

Cutting Speed 
(RPM)

 Feed Rate (inches/minute)
 0.10 0.20 0.30

100 54 60 65  79 68 80 99 88 94
200 98 89 94  98 106 90 100 98 108
300 109 98 89 100 108 94 99 82 102
400 112 100 92 94 104 108 98 116 106

TABLE 9.35

Data for Problem 8

Oil Type 1
Mower Make

Oil Type 2
Mower Make

I  II  III  IV

1 2 5 8
2 3 6 9
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c. Construct an orthogonal polynomial equation for the data. 
d. Using the equation in item c, predict the surface finish when

cutting speed is 200 RPM and feed is 4; compute the residual.
10. In an experiment to test the effects of four factors—A, B, C, and

D—on a response variable, a 24 full factorial experiment was con-
ducted with two replications. The data are given in Table 9.37.
Conduct an ANOVA at α = 0.05.

11. A study was performed to determine the effect of material compo-
sition (A), heat treatment temperature (B), and annealing temper-
ature (C) on the tensile strength achieved. Each replicate of the 23

design was run in two blocks, because only four components can
be manufactured using the same batch of raw material. Two rep-
licates were run, with ABC confounded in Replicates I and II. The
coded data are as follows:

TABLE 9.36

Data for Problem 9

Feed (B)
Cutting Speed (A) (RPM)

200 300 

2  2 3 4 5
4 6 7 1 2

TABLE 9.37

Data for Problem 10

A B C D Replication 1 Replication 2

−1 −1 −1 −1 200 197
−1 −1 −1 1 194 189
−1 −1 1 −1 201 202
−1 −1 1 1 193 196
−1 1 −1 −1 190 208
−1 1 −1 1 195 198
−1 1 1 −1 205 203
−1 1 1 1 199 197
1 −1 −1 −1 188 190
1 −1 −1 1 180 178
1 −1 1 −1 192 193
1 −1 1 1 205 204
1 1 −1 −1 199 200
1 1 −1 1 179 175
1 1 1 −1 187 185
1 1 1 1 185 186

Total 3092 3101
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Conduct an ANOVA at α = 0.5.
 12. A one half fractional experiment was performed according to

Table 9.38, which also contains the data. Conduct an ANOVA at α =
0.05.

13. For the fractional factorial designs given below,

25−1 26−1 26−2 26−3 27−2 27−3 27−4 28−4

indicate the following quantities:
a. Number of defining contrasts
b. Number of generalized interactions
c. Number of alias groups
d. Number of aliases in each group

14. Construct a 26−2 fractional factorial design. List all the aliases.
15. Construct a 27−3 fractional factorial design. List all the aliases.
16. The Research & Development division of a company wants to test

the effect of three factors—A, B, and C—on a response variable.
When designing this 23 factorial experiment without replication,
the project team proposes using the design defined in Table 9.39
to accommodate the constraint that only two experiments can be
performed using materials from the same blend (batch).  
a. Briefly critique the design proposed by the team. More specifi-

cally, state the difficulties, if any, that might be encountered
when interpreting the results. Do not criticize the constraint, as
the team cannot do anything about that. Also, the team cannot
replicate the experiment.

b. If you think that there are disadvantages in this design, recom-
mend a better design that will remedy them, while at the same

Replicate I
Block 1 Block 2 

A B C A B C

− − − −3 + − − 1
+ + − 4 − + − −1
+ − + 3 − − + −1
− + + 2 + + + 6

Replicate II 
Block 3 Block 4 

A B C A B C

− − − −1 + − − 2
+ + − 4 − + − 0
+ − + 1 − − + 0
− + + 1 + + + 6
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ABCD Replication 1 Replication 2 Total

+ 5 6 11
−
−
+ 11 12 23
−
+ 32 30 62
+ 15 18 33
−
− 12 14 26
+
+
− 16 12 28
+
− 24 26 50
− 10 12 22
+

TABLE 9.38 

Data for Problem 12: 24 Factorial Experiment

A B C D AB AC AD BC BD CD ABC ABD ACD BCD

− − − − + + + + + + − − − −
+ − − − − − − + + + + + + −
− + − − − + + − − + + + − +
+ + − − + − − − − + − − + +
− − + − + − + − + − + − + +
+ − + − − + − − + − − + − +
− + + − − − + + − − − + + −
+ + + − + + − + − − + − − −
− − − + + + − + − − − + + +
+ − − + − − + + − − + − − +
− + − + − + − − + − + − + −
+ + − + + − + − + − − + − −
− − + + + − − − − + + + − −
+ − + + − + + − − + − − + −
− + + + − − − + + + − − − +
+ + + + + + + + + + + + + +

©2001 CRC Press LLC



time satisfying the given constraint. Please note that the team
cannot replicate the experiment. Indicate your design by writing
the shifts and blends in which each of the eight experiments is
to be run in your design. 
State the basis (or bases) of your design (that is, how you came
up with your design) and the disadvantages of your design.

17. In a 23 full factorial experiment to test the effects of cutting speed
(A), feed rate (B) and hardness of material (C) on the surface finish,
one observation per each of the eight combinations was collected.
In order to obtain an independent estimate of the error and to test
the curvature effect of the factors on the response variable, the
experimenter replicated the experiment four times at the center
point. The coded observations are given in Table 9.40. 
Conduct an ANOVA to test the effects of all possible effects at
α = 0.05.

TABLE 9.39

Data for Problem 16: Team’s Design

 A B C AB AC BC ABC Shift Blend

− − − + + + − 1 1
− − + + − − + 1 2
− + − − + − + 2 1
− + + − − + − 2 2
+ − − − − + + 1 1
+ − + − + − − 1 2
+ + − + − − − 2 1
+ + + + + + + 2 2

TABLE 9.40

Data for Problem 17a

Feed Rate (B)

Cutting Speed (A)
−−−−300 RPM ++++350 RPM

Hardness (C) 
−−−−30 ++++40 −−−−30 ++++40

−0.002 10 15 8 13
+0.004 14 16 10 12
a Center point  (A → 325 RPM; B → 0.003; C → 35).
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TABLE A.1

   

6 0.07 0.08 0.09

  

39 0.0279 0.0319 0.0359

  

36 0.0675 0.0714 0.0753

  

26 0.1064 0.1103 0.1141

  

06 0.1443 0.1480 0.1517

  

72 0.1808 0.1844 0.1879

  

23 0.2157 0.2190 0.2224

  

54 0.2486 0.2517 0.2549

  

64 0.2794 0.2823 0.2852

  

51 0.3078 0.3106 0.3133

  

15 0.3340 0.3365 0.3389

  

54 0.3577 0.3599 0.3621

  

70 0.3790 0.3810 0.3830

  

62 0.3980 0.3997 0.4015

  

31 0.4147 0.4162 0.4177

  

79 0.4292 0.4306 0.4319

  

06 0.4418 0.4429 0.4441

  

15 0.4525 0.4535 0.4545

  

08 0.4616 0.4625 0.4633

  

86 0.4693 0.4699 0.4706

  

50 0.4756 0.4761 0.4767

  

03 0.4808 0.4812 0.4817

  

46 0.4850 0.4854 0.4857

  

81 0.4884 0.4887 0.4890

  

09 0.4911 0.4913 0.4916

  

31 0.4932 0.4934 0.4936

  

48 0.4949 0.4951 0.4952
Standard Normal Cumulative Probabilities

z 0.00 0.01 0.02 0.03 0.04 0.05 0.0

0.00 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.02
0.10 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.06
0.20 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.10
0.30 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.14
0.40 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.17
0.50 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.21
0.60 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.24
0.70 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.27
0.80 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.30
0.90 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.33
1.00 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.35
1.10 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.37
1.20 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.39
1.30 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.41
1.40 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.42
1.50 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.44
1.60 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.45
1.70 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.46
1.80 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.46
1.90 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.47
2.00 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.48
2.10 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.48
2.20 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.48
2.30 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.49
2.40 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.49
2.50 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.49
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2.60

 

0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964

  

71 0.4972 0.4973 0.4974

  

79 0.4979 0.4980 0.4981

  

85 0.4985 0.4986 0.4986

  

89 0.4989 0.4990 0.4990

  

92 0.4992 0.4993 0.4993

  

94 0.4995 0.4995 0.4995

  

96 0.4996 0.4996 0.4997

  

97 0.4997 0.4997 0.4998

  

98 0.4998 0.4998 0.4998

  

99 0.4999 0.4999 0.4999

  

99 0.4999 0.4999 0.4999

  

99 0.4999 0.4999 0.4999

  

00 0.5000 0.5000 0.5000

                     

– 

 

P

 

[0 

 

<

 

 

 

Z

 

 

 

<

 

 

 

z

 

].
2.70 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.49
2.80 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.49
2.90 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.49
3.00 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.49
3.10 0.4990 0.4991 0.4991 0.4991 0.4992 0.4992 0.49
3.20 0.4993 0.4993 0.4994 0.4994 0.4994 0.4994 0.49
3.30 0.4995 0.4995 0.4995 0.4996 0.4996 0.4996 0.49
3.40 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.49
3.50 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.49
3.60 0.4998 0.4998 0.4999 0.4999 0.4999 0.4999 0.49
3.70 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.49
3.80 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.49
3.90 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.50

Note: The table gives values of P[0 < Z < z]. If z is negative, then P[Z < –z] = 0.50 
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TABLE A.2

t-Table

αααα
νννν a 0.2 0.1 0.05 0.025 0.01 0.005 0.001 0.0005 0.0001

1 1.3764 3.0777 6.3138 12.706 31.821 63.657 318.31 636.62 3183.1
2 1.0607 1.8856 2.9200 4.3027 6.9646 9.9248 22.327 31.599 70.700
3 0.9785 1.6377 2.3534 3.1824 4.5407 5.8409 10.215 12.924 22.204
4 0.9410 1.5332 2.1318 2.7764 3.7470 4.6041 7.1732 8.6103 13.034
5 0.9195 1.4759 2.0150 2.5706 3.3649 4.0322 5.8934 6.8688 9.6776
6 0.9057 1.4398 1.9432 2.4469 3.1427 3.7074 5.2076 5.9588 8.0248
7 0.8960 1.4149 1.8946 2.3646 2.9980 3.4995 4.7853 5.4079 7.0634
8 0.8889 1.3968 1.8595 2.3060 2.8965 3.3554 4.5008 5.0413 6.4420
9 0.8834 1.3830 1.8331 2.2622 2.8214 3.2498 4.2968 4.7809 6.0101

10 0.8791 1.3722 1.8125 2.2281 2.7638 3.1693 4.1437 4.5869 5.6938
11 0.8755 1.3634 1.7959 2.2010 2.7181 3.1058 4.0247 4.4370 5.4528
12 0.8726 1.3562 1.7823 2.1788 2.6810 3.0545 3.9296 4.3178 5.2633
13 0.8702 1.3502 1.7709 2.1604 2.6503 3.0123 3.8520 4.2208 5.1106
14 0.8681 1.3450 1.7613 2.1448 2.6245 2.9768 3.7874 4.1405 4.9850
15 0.8662 1.3406 1.7531 2.1314 2.6025 2.9467 3.7328 4.0728 4.8800
16 0.8647 1.3368 1.7459 2.1199 2.5835 2.9208 3.6862 4.0150 4.7909
17 0.8633 1.3334 1.7396 2.1098 2.5669 2.8982 3.6458 3.9651 4.7144
18 0.8620 1.3304 1.7341 2.1009 2.5524 2.8784 3.6105 3.9216 4.6480
19 0.8610 1.3277 1.7291 2.0930 2.5395 2.8609 3.5794 3.8834 4.5899
20 0.8600 1.3253 1.7247 2.0860 2.5280 2.8453 3.5518 3.8495 4.5385
21 0.8591 1.3232 1.7207 2.0796 2.5176 2.8314 3.5272 3.8193 4.4929
22 0.8583 1.3212 1.7171 2.0739 2.5083 2.8188 3.5050 3.7921 4.4520
23 0.8575 1.3195 1.7139 2.0687 2.4999 2.8073 3.4850 3.7676 4.4152
24 0.8569 1.3178 1.7109 2.0639 2.4922 2.7969 3.4668 3.7454 4.3819
25 0.8562 1.3163 1.7081 2.0595 2.4851 2.7874 3.4502 3.7251 4.3517
26 0.8557 1.3150 1.7056 2.0555 2.4786 2.7787 3.4350 3.7066 4.3240
27 0.8551 1.3137 1.7033 2.0518 2.4727 2.7707 3.4210 3.6896 4.2987
28 0.8546 1.3125 1.7011 2.0484 2.4671 2.7633 3.4082 3.6739 4.2754
29 0.8542 1.3114 1.6991 2.0452 2.4620 2.7564 3.3962 3.6594 4.2539
30 0.8538 1.3104 1.6973 2.0423 2.4573 2.7500 3.3852 3.6460 4.2340
35 0.8520 1.3062 1.6896 2.0301 2.4377 2.7238 3.3400 3.5911 4.1531
40 0.8507 1.3031 1.6839 2.0211 2.4233 2.7045 3.3069 3.5510 4.0942
50 0.8489 1.2987 1.6759 2.0086 2.4033 2.6778 3.2614 3.4960 4.0140
60 0.8477 1.2958 1.6706 2.0003 2.3901 2.6603 3.2317 3.4602 3.9621
70 0.8468 1.2938 1.6669 1.9944 2.3808 2.6479 3.2108 3.4350 3.9257
80 0.8461 1.2922 1.6641 1.9901 2.3739 2.6387 3.1953 3.4163 3.8988
90 0.8456 1.2910 1.6620 1.9867 2.3685 2.6316 3.1833 3.4019 3.8780

100 0.8452 1.2901 1.6602 1.9840 2.3642 2.6259 3.1737 3.3905 3.8616
120 0.8446 1.2886 1.6577 1.9799 2.3578 2.6174 3.1595 3.3735 3.8372
∞∞∞∞ 0.8416 1.2816 1.6449 1.9600 2.3263 2.5758 3.0902 3.2905 3.7190

a  ν ==== Degrees of freedom.
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TABLE A.3a 

 

F

      

20 25 30 40 60 120

  

6209 6240 6261 6287 6313 6339 6366

  

99.45 99.46 99.47 99.47 99.48 99.49 99.50

  

26.69 26.58 26.50 26.41 26.32 26.22 26.13

  

14.02 13.91 13.84 13.75 13.65 13.56 13.46

  

9.55 9.45 9.38 9.29 9.20 9.11 9.02

  

7.40 7.30 7.23 7.14 7.06 6.97 6.88

  

6.16 6.06 5.99 5.91 5.82 5.74 5.65

  

5.36 5.26 5.20 5.12 5.03 4.95 4.86

  

4.81 4.71 4.65 4.57 4.48 4.40 4.31

 

1

 

4.41 4.31 4.25 4.17 4.08 4.00 3.91

 

1

 

4.10 4.01 3.94 3.86 3.78 3.69 3.60

 

1

 

3.86 3.76 3.70 3.62 3.54 3.45 3.36

 

1

 

3.66 3.57 3.51 3.43 3.34 3.25 3.17

 

1

 

3.51 3.41 3.35 3.27 3.18 3.09 3.00

 

1

 

3.37 3.28 3.21 3.13 3.05 2.96 2.87

 

1

 

3.26 3.16 3.10 3.02 2.93 2.84 2.75

 

1

 

3.16 3.07 3.00 2.92 2.83 2.75 2.65

 

1

 

3.08 2.98 2.92 2.84 2.75 2.66 2.57

 

1

 

3.00 2.91 2.84 2.76 2.67 2.58 2.49

 

2

 

2.94 2.84 2.78 2.69 2.61 2.52 2.42

 

2

 

2.88 2.79 2.72 2.64 2.55 2.46 2.36

 

2

 

2.83 2.73 2.67 2.58 2.50 2.40 2.31

 

2

 

2.78 2.69 2.62 2.54 2.45 2.35 2.26

 

2

 

2.74 2.64 2.58 2.49 2.40 2.31 2.21

 

2

 

2.70 2.60 2.54 2.45 2.36 2.27 2.17

 

2

 

2.66 2.57 2.50 2.42 2.33 2.23 2.13

 

2

 

2.63 2.54 2.47 2.38 2.29 2.20 2.10

νννν ∞∞∞∞
 Table for α = 0.01

1 2 3 4 5 6 7 8 9 10 12 15

1 4052 4999 5403 5625 5764 5859 5928 5981 6023 6056 6106 6157

2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 99.42 99.43

3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23 27.05 26.87

4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.37 14.20

5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.89 9.72

6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56

7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31

8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52

9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 4.96

0 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56

1 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.40 4.25

2 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01

3 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.96 3.82

4 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.80 3.66

5 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.67 3.52

6 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.55 3.41

7 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.46 3.31

8 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.37 3.23

9 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.30 3.15

0 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09

1 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.17 3.03

2 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.12 2.98

3 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.07 2.93

4 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.03 2.89

5 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 2.99 2.85

6 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 2.96 2.81

7 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06 2.93 2.78

νννν1
a

2
b
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T

 

F

      

20 25 30 40 60 120

  

2.60 2.51 2.44 2.35 2.26 2.17 2.06

  

2.57 2.48 2.41 2.33 2.23 2.14 2.03

  

2.55 2.45 2.39 2.30 2.21 2.11 2.01

  

2.44 2.35 2.28 2.19 2.10 2.00 1.89

  

2.37 2.27 2.20 2.11 2.02 1.92 1.80

  

2.31 2.21 2.14 2.05 1.96 1.85 1.74

  

2.27 2.17 2.10 2.01 1.91 1.80 1.68

  

2.20 2.10 2.03 1.94 1.84 1.73 1.60

  

2.15 2.05 1.98 1.89 1.78 1.67 1.54

  

2.12 2.01 1.94 1.85 1.75 1.63 1.49

  

2.09 1.99 1.92 1.82 1.72 1.60 1.46

 

1

 

2.07 1.97 1.89 1.80 1.69 1.57 1.43

 

1

 

2.05 1.95 1.88 1.78 1.67 1.55 1.40

 

1

 

2.03 1.93 1.86 1.76 1.66 1.53 1.38

1.88 1.77 1.70 1.59 1.47 1.32 1.00

 

a

    

b

   

νννν ∞∞∞∞
ABLE A.3a

 Table for α = 0.01 (continued)

1 2 3 4 5 6 7 8 9 10 12 15

28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.90 2.75

29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00 2.87 2.73

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70

35 7.42 5.27 4.40 3.91 3.59 3.37 3.20 3.07 2.96 2.88 2.74 2.60

40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.66 2.52

45 7.23 5.11 4.25 3.77 3.45 3.23 3.07 2.94 2.83 2.74 2.61 2.46

50 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78 2.70 2.56 2.42

60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.50 2.35

70 7.01 4.92 4.07 3.60 3.29 3.07 2.91 2.78 2.67 2.59 2.45 2.31

80 6.96 4.88 4.04 3.56 3.26 3.04 2.87 2.74 2.64 2.55 2.42 2.27

90 6.93 4.85 4.01 3.53 3.23 3.01 2.84 2.72 2.61 2.52 2.39 2.24

00 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59 2.50 2.37 2.22

10 6.87 4.80 3.96 3.49 3.19 2.97 2.81 2.68 2.57 2.49 2.35 2.21

20 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.34 2.19

6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.18 2.04

ν1 = Numerator degrees of freedom.
ν2 = Denominator degrees of freedom.

νννν1
a

2
b

∞∞∞∞
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TABLE A.3b

F

20 25 30 40 60 120

248.0 249.3 250.1 251.1 252.2 253.3 254.3

19.45 19.46 19.46 19.47 19.48 19.49 19.50

8.66 8.63 8.62 8.59 8.57 8.55 8.53

5.80 5.77 5.75 5.72 5.69 5.66 5.63

4.56 4.52 4.50 4.46 4.43 4.40 4.36

3.87 3.83 3.81 3.77 3.74 3.70 3.67

3.44 3.40 3.38 3.34 3.30 3.27 3.23

3.15 3.11 3.08 3.04 3.01 2.97 2.93

2.94 2.89 2.86 2.83 2.79 2.75 2.71

1 2.77 2.73 2.70 2.66 2.62 2.58 2.54

1 2.65 2.60 2.57 2.53 2.49 2.45 2.40

1 2.54 2.50 2.47 2.43 2.38 2.34 2.30

1 2.46 2.41 2.38 2.34 2.30 2.25 2.21

1 2.39 2.34 2.31 2.27 2.22 2.18 2.13

1 2.33 2.28 2.25 2.20 2.16 2.11 2.07

1 2.28 2.23 2.19 2.15 2.11 2.06 2.01

1 2.23 2.18 2.15 2.10 2.06 2.01 1.96

1 2.19 2.14 2.11 2.06 2.02 1.97 1.92

1 2.16 2.11 2.07 2.03 1.98 1.93 1.88

2 2.12 2.07 2.04 1.99 1.95 1.90 1.84

2 2.10 2.05 2.01 1.96 1.92 1.87 1.81

2 2.07 2.02 1.98 1.94 1.89 1.84 1.78

2 2.05 2.00 1.96 1.91 1.86 1.81 1.76

2 2.03 1.97 1.94 1.89 1.84 1.79 1.73

2 2.01 1.96 1.92 1.87 1.82 1.77 1.71

2 1.99 1.94 1.90 1.85 1.80 1.75 1.69

2 1.97 1.92 1.88 1.84 1.79 1.73 1.67

νννν ∞∞∞∞
 Table for α = 0.05

1 2 3 4 5 6 7 8 9 10 12 15

1 161.5 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 243.9 246.0

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.41 19.43

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01

0 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85

1 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72

2 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62

3 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53

4 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46

5 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40

6 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35

7 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31

8 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27

9 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23

0 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20

1 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18

2 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15

3 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13

4 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11

5 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09

6 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.15 2.07

7 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 2.13 2.06

νννν1
a

2
b
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TABLE A.3b

F

20 25 30 40 60 120

1.96 1.91 1.87 1.82 1.77 1.71 1.65

1.94 1.89 1.85 1.81 1.75 1.70 1.64

1.93 1.88 1.84 1.79 1.74 1.68 1.62

1.88 1.82 1.79 1.74 1.68 1.62 1.56

1.84 1.78 1.74 1.69 1.64 1.58 1.51

1.81 1.75 1.71 1.66 1.60 1.54 1.47

1.78 1.73 1.69 1.63 1.58 1.51 1.44

1.75 1.69 1.65 1.59 1.53 1.47 1.39

1.72 1.66 1.62 1.57 1.50 1.44 1.35

1.70 1.64 1.60 1.54 1.48 1.41 1.32

1.69 1.63 1.59 1.53 1.46 1.39 1.30

1 1.68 1.62 1.57 1.52 1.45 1.38 1.28

1 1.67 1.61 1.56 1.50 1.44 1.36 1.27

1 1.66 1.60 1.55 1.50 1.43 1.35 1.25

1.57 1.51 1.46 1.39 1.32 1.22 1.00

a

b

∞∞∞∞

∞∞
 Table for α = 0.05 (continued)

1 2 3 4 5 6 7 8 9 10 12 15

28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.12 2.04

29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 2.10 2.03

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01

35 4.12 3.27 2.87 2.64 2.49 2.37 2.29 2.22 2.16 2.11 2.04 1.96

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92

45 4.06 3.20 2.81 2.58 2.42 2.31 2.22 2.15 2.10 2.05 1.97 1.89

50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.95 1.87

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84

70 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.02 1.97 1.89 1.81

80 3.96 3.11 2.72 2.49 2.33 2.21 2.13 2.06 2.00 1.95 1.88 1.79

90 3.95 3.10 2.71 2.47 2.32 2.20 2.11 2.04 1.99 1.94 1.86 1.78

00 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.85 1.77

10 3.93 3.08 2.69 2.45 2.30 2.18 2.09 2.02 1.97 1.92 1.84 1.76

20 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 1.83 1.75

3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67

ν1 = Numerator degrees of freedom.
ν2 = Denominator degrees of freedom.

νννν1
a

νννν1
b

∞∞
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TABLE A.4 

C

n B6 D1 D2 D3 D4

2.6063 0 3.6855 0 3.2672
2.2761 0 4.3581 0 2.5743
2.0879 0 4.6983 0 2.2819
1.9635 0 4.9184 0 2.1144
1.8744 0 5.0782 0 2.0039
1.8055 0.2046 5.2038 0.0756 1.9244
1.7517 0.3880 5.3068 0.1363 1.8637
1.7069 0.5466 5.3934 0.1840 1.8160

1 1.6689 0.6866 5.4692 0.2231 1.7769
1 1.6367 0.8107 5.5345 0.2555 1.7445
1 1.6090 0.9229 5.5939 0.2832 1.7168
1 1.5852 1.0244 5.6468 0.3071 1.6929
1 1.5630 1.1182 5.6962 0.3282 1.6718
1 1.5442 1.2036 5.7408 0.3466 1.6534
1 1.5262 1.2826 5.7820 0.3631 1.6369
1 1.5107 1.3558 5.8204 0.3779 1.6221
1 1.4962 1.4245 5.8561 0.3913 1.6087
1 1.4829 1.4882 5.8892 0.4034 1.5966
2 1.4709 1.5494 5.9216 0.4148 1.5852
2 1.4586 1.6053 5.9505 0.4249 1.5751
2 1.4477 1.6600 5.9794 0.4346 1.5654
2 1.4384 1.7103 6.0057 0.4433 1.5567
2 1.4289 1.7593 6.0319 0.4516 1.5484
2 1.4211 1.8056 6.0560 0.4593 1.5407
onstants Used for Estimation and Construction of Control Charts

c4 d2 d3 A A2 A3 B3 B4 B5

2 0.7979 1.1280 0.8525 2.1213 1.8806 2.6586 0 3.2664 0
3 0.8862 1.6929 0.8884 1.7321 1.0231 1.9545 0 2.5684 0
4 0.9213 2.0589 0.8798 1.5000 0.7286 1.6281 0 2.2662 0
5 0.9399 2.3261 0.8641 1.3416 0.5768 1.4273 0 2.0889 0
6 0.9516 2.5342 0.8480 1.2247 0.4833 1.2872 0.0302 1.9698 0.0286
7 0.9593 2.7042 0.8332 1.1339 0.4193 1.1819 0.1182 1.8818 0.1133
8 0.9651 2.8474 0.8198 1.0607 0.3725 1.0991 0.1847 1.8153 0.1783
9 0.9693 2.9700 0.8078 1.0000 0.3367 1.0317 0.2389 1.7611 0.2317
0 0.9727 3.0779 0.7971 0.9487 0.3082 0.9753 0.2843 1.7157 0.2765
1 0.9753 3.1726 0.7873 0.9045 0.2851 0.9273 0.3221 1.6779 0.3141
2 0.9776 3.2584 0.7785 0.8660 0.2658 0.8859 0.3541 1.6459 0.3462
3 0.9794 3.3356 0.7704 0.8321 0.2494 0.8496 0.3815 1.6185 0.3736
4 0.9810 3.4072 0.7630 0.8018 0.2353 0.8173 0.4067 1.5933 0.3990
5 0.9823 3.4722 0.7562 0.7746 0.2231 0.7886 0.4279 1.5721 0.4204
6 0.9835 3.5323 0.7499 0.7500 0.2123 0.7626 0.4482 1.5518 0.4408
7 0.9845 3.5881 0.7441 0.7276 0.2028 0.7391 0.4656 1.5344 0.4583
8 0.9854 3.6403 0.7386 0.7071 0.1942 0.7176 0.4817 1.5183 0.4746
9 0.9862 3.6887 0.7335 0.6882 0.1866 0.6979 0.4964 1.5036 0.4895
0 0.9870 3.7355 0.7287 0.6708 0.1796 0.6797 0.5096 1.4904 0.5029
1 0.9875 3.7779 0.7242 0.6547 0.1733 0.6629 0.5231 1.4769 0.5166
2 0.9882 3.8197 0.7199 0.6396 0.1674 0.6472 0.5349 1.4651 0.5287
3 0.9887 3.8580 0.7159 0.6255 0.1621 0.6327 0.5451 1.4549 0.5390
4 0.9892 3.8956 0.7121 0.6124 0.1572 0.6191 0.5555 1.4445 0.5495
5 0.9896 3.9308 0.7084 0.6000 0.1526 0.6063 0.5639 1.4361 0.5581
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TABLE A.5

Extended Standard Normal Tables

z Value Cum. Prob   PPM z Value Cum. Prob PPM

–3.00 0.0013499672 1349.9672 –3.56 0.0001854674 185.4674
–3.01 0.0013063077 1306.3077 –3.57 0.0001785299 178.5299
–3.02 0.0012639426 1263.9426 –3.58 0.0001718356 171.8356
–3.03 0.0012228379 1222.8379 –3.59 0.0001653768 165.3768
–3.04 0.0011829598 1182.9598 –3.60 0.0001591457 159.1457
–3.05 0.0011442758 1144.2758 –3.61 0.0001531349 153.1349
–3.06 0.0011067538 1106.7538 –3.62 0.0001473372 147.3372
–3.07 0.0010703626 1070.3626 –3.63 0.0001417457 141.7457
–3.08 0.0010350715 1035.0715 –3.64 0.0001363534 136.3534
–3.09 0.0010008508 1000.8508 –3.65 0.0001311538 131.1538
–3.10 0.0009676712 967.6712 –3.66 0.0001261406 126.1406
–3.11 0.0009355045 935.5045 –3.67 0.0001213076 121.3076
–3.12 0.0009043226 904.3226 –3.68 0.0001166487 116.6487
–3.13 0.0008740986 874.0986 –3.69 0.0001121581 112.1581
–3.14 0.0008448059 844.8059 –3.70 0.0001078301 107.8301
–3.15 0.0008164187 816.4187 –3.71 0.0001036594 103.6594
–3.16 0.0007889117 788.9117 –3.72 0.0000996405 99.6405
–3.17 0.0007622602 762.2602 –3.73 0.0000957684 95.7684
–3.18 0.0007364404 736.4404 –3.74 0.0000920380 92.0380
–3.19 0.0007114286 711.4286 –3.75 0.0000884446 88.4446
–3.20 0.0006872021 687.2021 –3.76 0.0000849834 84.9834
–3.21 0.0006637385 663.7385 –3.77 0.0000816499 81.6499
–3.22 0.0006410161 641.0161 –3.78 0.0000784397 78.4397
–3.23 0.0006190137 619.0137 –3.79 0.0000753486 75.3486
–3.24 0.0005977105 597.7105 –3.80 0.0000723724 72.3724
–3.25 0.0005770865 577.0865 –3.81 0.0000695072 69.5072
−−−−3.26 0.0005571219 557.1219 −−−−3.82 0.0000667491 66.7491
−−−−3.27 0.0005377977 537.7977 −−−−3.83 0.0000640944 64.0944
−−−−3.28 0.0005190951 519.0951 −−−−3.84 0.0000615394 61.5394
−−−−3.29 0.0005009959 500.9959 −−−−3.85 0.0000590806 59.0806
−−−−3.30 0.0004834825 483.4825 −−−−3.86 0.0000567147 56.7147
−−−−3.31 0.0004665376 466.5376 −−−−3.87 0.0000544383 54.4383
−−−−3.32 0.0004501443 450.1443 −−−−3.88 0.0000522484 52.2484
−−−−3.33 0.0004342863 434.2863 −−−−3.89 0.0000501418 50.1418
−−−−3.34 0.0004189477 418.9477 −−−−3.90 0.0000481155 48.1155
−−−−3.35 0.0004041129 404.1129 −−−−3.91 0.0000461668 46.1668
−−−−3.36 0.0003897667 389.7667 −−−−3.92 0.0000442927 44.2927
−−−−3.37 0.0003758946 375.8946 −−−−3.93 0.0000424907 42.4907
−−−−3.38 0.0003624821 362.4821 −−−−3.94 0.0000407581 40.7581
−−−−3.39 0.0003495154 349.5154 −−−−3.95 0.0000390925 39.0925
−−−−3.40 0.0003369808 336.9808 −−−−3.96 0.0000374913 37.4913
−−−−3.41 0.0003248652 324.8652 −−−−3.97 0.0000359523 35.9523
−−−−3.42 0.0003131558 313.1558 −−−−3.98 0.0000344732 34.4732
−−−−3.43 0.0003018400 301.8400 −−−−3.99 0.0000330518 33.0518
−−−−3.44 0.0002909058 290.9058 −−−−4.00 0.0000316860 31.6860
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TABLE A.5

Extended Standard Normal Tables (continued)

z Value Cum. Prob   PPM z Value Cum. Prob PPM

−−−−3.45 0.0002803412 280.3412 −−−−4.01 0.0000303738 30.3738
−−−−3.46 0.0002701349 270.1349 −−−−4.02 0.0000291131 29.1131
−−−−3.47 0.0002602757 260.2757 −−−−4.03 0.0000279021 27.9021
−−−−3.48 0.0002507526 250.7526 −−−−4.04 0.0000267389 26.7389
−−−−3.49 0.0002415553 241.5553 −−−−4.05 0.0000256217 25.6217
−−−−3.50 0.0002326734 232.6734 −−−−4.06 0.0000245489 24.5489
−−−−3.51 0.0002240969 224.0969 −−−−4.07 0.0000235188 23.5188
−−−−3.52 0.0002158162 215.8162 −−−−4.08 0.0000225297 22.5297
−−−−3.53 0.0002078219 207.8219 −−−−4.09 0.0000215802 21.5802
−−−−3.54 0.0002001049 200.1049 −−−−4.10 0.0000206687 20.6687
−−−−3.55 0.0001926562 192.6562 −−−−4.11 0.0000197938 19.7938
−−−−4.12 0.0000189542 18.9542 −−−−4.69 0.0000013676 1.3676
−−−−4.13 0.0000181484 18.1484 −−−−4.70 0.0000013023 1.3023
−−−−4.14 0.0000173753 17.3753 −−−−4.71 0.0000012400 1.2400
−−−−4.15 0.0000166335 16.6335 −−−−4.72 0.0000011806 1.1806
−−−−4.16 0.0000159218 15.9218 −−−−4.73 0.0000011239 1.1239
−−−−4.17 0.0000152391 15.2391 −−−−4.74 0.0000010699 1.0699
−−−−4.18 0.0000145843 14.5843 −−−−4.75 0.0000010183 1.0183
−−−−4.19 0.0000139563 13.9563 −−−−4.76 0.0000009692 0.9692
−−−−4.20 0.0000133541 13.3541 −−−−4.77 0.0000009223 0.9223
−−−−4.21 0.0000127766 12.7766 −−−−4.78 0.0000008776 0.8776
−−−−4.22 0.0000122230 12.2230 −−−−4.79 0.0000008350 0.8350
−−−−4.23 0.0000116922 11.6922 −−−−4.80 0.0000007944 0.7944
−−−−4.24 0.0000111834 11.1834 −−−−4.81 0.0000007556 0.7556
−−−−4.25 0.0000106957 10.6957 −−−−4.82 0.0000007187 0.7187
−−−−4.26 0.0000102283 10.2283 −−−−4.83 0.0000006836 0.6836
−−−−4.27 0.0000097804 9.7804 −−−−4.84 0.0000006501 0.6501
−−−−4.28 0.0000093512 9.3512 −−−−4.85 0.0000006181 0.6181
−−−−4.29 0.0000089400 8.9400 −−−−4.86 0.0000005877 0.5877
−−−−4.30 0.0000085460 8.5460 −−−−4.87 0.0000005588 0.5588
−−−−4.31 0.0000081687 8.1687 −−−−4.88 0.0000005312 0.5312
−−−−4.32 0.0000078072 7.8072 −−−−4.89 0.0000005049 0.5049
−−−−4.33 0.0000074610 7.4610 −−−−4.90 0.0000004799 0.4799
−−−−4.34 0.0000071295 7.1295 −−−−4.91 0.0000004560 0.4560
−−−−4.35 0.0000068121 6.8121 −−−−4.92 0.0000004334 0.4334
−−−−4.36 0.0000065082 6.5082 −−−−4.93 0.0000004118 0.4118
−−−−4.37 0.0000062172 6.2172 −−−−4.94 0.0000003912 0.3912
−−−−4.38 0.0000059387 5.9387 −−−−4.95 0.0000003716 0.3716
−−−−4.39 0.0000056721 5.6721 –4.96 0.0000003530 0.3530
−−−−4.40 0.0000054170 5.4170 –4.97 0.0000003353 0.3353
−−−−4.41 0.0000051728 5.1728 –4.98 0.0000003184 0.3184
−−−−4.42 0.0000049392 4.9392 –4.99 0.0000003024 0.3024
−−−−4.43 0.0000047156 4.7156 –5.00 0.0000002871 0.2871
−−−−4.44 0.0000045018 4.5018 –5.01 0.0000002726 0.2726

(Continued)
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TABLE A.5

Extended Standard Normal Tables (continued)

z Value Cum. Prob   PPM z Value Cum. Prob PPM

−−−−4.45 0.0000042972 4.2972 –5.02 0.0000002588 0.2588
−−−−4.46 0.0000041016 4.1016 –5.03 0.0000002456 0.2456
−−−−4.47 0.0000039145 3.9145 –5.04 0.0000002331 0.2331
−−−−4.48 0.0000037355 3.7355 –5.05 0.0000002213 0.2213
−−−−4.49 0.0000035644 3.5644 –5.06 0.0000002100 0.2100
−−−−4.50 0.0000034008 3.4008 –5.07 0.0000001992 0.1992
−−−−4.51 0.0000032444 3.2444 –5.08 0.0000001890 0.1890
−−−−4.52 0.0000030949 3.0949 –5.09 0.0000001793 0.1793
−−−−4.53 0.0000029520 2.9520 –5.10 0.0000001701 0.1701
−−−−4.54 0.0000028154 2.8154 –5.11 0.0000001614 0.1614
−−−−4.55 0.0000026849 2.6849 –5.12 0.0000001530 0.1530
−−−−4.56 0.0000025602 2.5602 –5.13 0.0000001451 0.1451
−−−−4.57 0.0000024411 2.4411 –5.14 0.0000001376 0.1376
−−−−4.58 0.0000023272 2.3272 –5.15 0.0000001305 0.1305
−−−−4.59 0.0000022185 2.2185 –5.11 0.0000001614 0.1614
−−−−4.60 0.0000021146 2.1146 –5.12 0.0000001530 0.1530
−−−−4.61 0.0000020155 2.0155 –5.13 0.0000001451 0.1451
−−−−4.62 0.0000019207 1.9207 –5.14 0.0000001376 0.1376
−−−−4.63 0.0000018303 1.8303 –5.15 0.0000001305 0.1305
−−−−4.64 0.0000017439 1.7439 –5.16 0.0000001237 0.1237
−−−−4.65 0.0000016615 1.6615 –5.17 0.0000001173 0.1173
−−−−4.66 0.0000015828 1.5828 –5.18 0.0000001112 0.1112
−−−−4.67 0.0000015077 1.5077 –5.19 0.0000001053 0.1053
−−−−4.68 0.0000014360 1.4360 –5.20 0.0000000998 0.0998
−−−−5.21 0.0000000946 0.0946 −−−−5.61 0.0000000101 0.0101
−−−−5.22 0.0000000896 0.0896 −−−−5.62 0.0000000096 0.0096
−−−−5.23 0.0000000849 0.0849 −−−−5.63 0.0000000090 0.0090
−−−−5.24 0.0000000804 0.0804 −−−−5.64 0.0000000085 0.0085
−−−−5.25 0.0000000762 0.0762 −−−−5.65 0.0000000080 0.0080
−−−−5.26 0.0000000722 0.0722 −−−−5.66 0.0000000076 0.0076
−−−−5.27 0.0000000684 0.0684 −−−−5.67 0.0000000072 0.0072
−−−−5.28 0.0000000647 0.0647 −−−−5.68 0.0000000068 0.0068
−−−−5.29 0.0000000613 0.0613 −−−−5.69 0.0000000064 0.0064
−−−−5.30 0.0000000580 0.0580 −−−−5.70 0.0000000060 0.0060
−−−−5.31 0.0000000549 0.0549 −−−−5.71 0.0000000057 0.0057
−−−−5.32 0.0000000520 0.0520 −−−−5.72 0.0000000053 0.0053
−−−−5.33 0.0000000492 0.0492 −−−−5.73 0.0000000050 0.0050
−−−−5.34 0.0000000466 0.0466 −−−−5.74 0.0000000047 0.0047
−−−−5.35 0.0000000441 0.0441 −−−−5.75 0.0000000045 0.0045
−−−−5.36 0.0000000417 0.0417 −−−−5.76 0.0000000042 0.0042
−−−−5.37 0.0000000395 0.0395 −−−−5.77 0.0000000040 0.0040
−−−−5.38 0.0000000373 0.0373 −−−−5.78 0.0000000037 0.0037
−−−−5.39 0.0000000353 0.0353 −−−−5.79 0.0000000035 0.0035
−−−−5.40 0.0000000334 0.0334 −−−−5.80 0.0000000033 0.0033
−−−−5.41 0.0000000316 0.0316 −−−−5.81 0.0000000031 0.0031
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TABLE A.5

Extended Standard Normal Tables (continued)

z Value Cum. Prob   PPM z Value Cum. Prob  PPM

−−−−5.42 0.0000000299 0.0299 −−−−5.82 0.0000000030 0.0030
−−−−5.43 0.0000000282 0.0282 −−−−5.83 0.0000000028 0.0028
−−−−5.44 0.0000000267 0.0267 −−−−5.84 0.0000000026 0.0026
−−−−5.45 0.0000000252 0.0252 −−−−5.85 0.0000000025 0.0025
−−−−5.46 0.0000000239 0.0239 −−−−5.86 0.0000000023 0.0023
–5.47 0.0000000226 0.0226 –5.87 0.0000000022 0.0022
–5.48 0.0000000213 0.0213 –5.88 0.0000000021 0.0021
–5.49 0.0000000201 0.0201 –5.89 0.0000000019 0.0019
–5.50 0.0000000190 0.0190 –5.90 0.0000000018 0.0018
–5.51 0.0000000180 0.0180 –5.91 0.0000000017 0.0017
–5.52 0.0000000170 0.0170 –5.92 0.0000000016 0.0016
–5.53 0.0000000161 0.0161 –5.93 0.0000000015 0.0015
–5.54 0.0000000152 0.0152 –5.94 0.0000000014 0.0014
–5.55 0.0000000143 0.0143 –5.95 0.0000000013 0.0013
–5.56 0.0000000135 0.0135 –5.96 0.0000000013 0.0013
–5.57 0.0000000128 0.0128 –5.97 0.0000000012 0.0012
–5.58 0.0000000121 0.0121 –5.98 0.0000000011 0.0011
–5.59 0.0000000114 0.0114 –5.99 0.0000000011 0.0011
–5.60 0.0000000107 0.0107 –6.00 0.0000000010 0.0010
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TABLE A.6 

.05 0.025 0.01 0.005 0.001

415 5.0239 6.6349 7.8794 10.8276
915 7.3778 9.2103 10.5966 13.8155
147 9.3484 11.3449 12.8382 16.2662
877 11.1433 13.2767 14.8603 18.4668
0705 12.8325 15.0863 16.7496 20.5150
5916 14.4494 16.8119 18.5476 22.4577
0671 16.0128 18.4753 20.2777 24.3219
5073 17.5345 20.0902 21.9550 26.1245
9190 19.0228 21.6660 23.5894 27.8772
3070 20.4832 23.2093 25.1882 29.5883
6751 21.9200 24.7250 26.7568 31.2641
0261 23.3367 26.2170 28.2995 32.9095
3620 24.7356 27.6882 29.8195 34.5282
6848 26.1189 29.1412 31.3193 36.1233
9958 27.4884 30.5779 32.8013 37.6973
2962 28.8454 31.9999 34.2672 39.2524
5871 30.1910 33.4087 35.7185 40.7902
8693 31.5264 34.8053 37.1565 42.3124
1435 32.8523 36.1909 38.5823 43.8202
4104 34.1696 37.5662 39.9968 45.3147
6706 35.4789 38.9322 41.4011 46.7970
9244 36.7807 40.2894 42.7957 48.2679
1725 38.0756 41.6384 44.1813 49.7282
4150 39.3641 42.9798 45.5585 51.1786
Chi-Square Table

αααα (Area to the Right)

ννννa 0.999 0.995 0.99 0.975 0.95 0.9 0.1 0

1 0.0000 0.0000 0.0002 0.0010 0.0039 0.0158 2.7055 3.8
2 0.0020 0.0100 0.0201 0.0506 0.1026 0.2107 4.6052 5.9
3 0.0243 0.0717 0.1148 0.2158 0.3518 0.5844 6.2514 7.8
4 0.0908 0.2070 0.2971 0.4844 0.7107 1.0636 7.7794 9.4
5 0.2102 0.4117 0.5543 0.8312 1.1455 1.6103 9.2364 11.
6 0.3811 0.6757 0.8721 1.2373 1.6354 2.2041 10.6446 12.
7 0.5985 0.9893 1.2390 1.6899 2.1673 2.8331 12.0170 14.
8 0.8571 1.3444 1.6465 2.1797 2.7326 3.4895 13.3616 15.
9 1.1519 1.7349 2.0879 2.7004 3.3251 4.1682 14.6837 16.

10 1.4787 2.1559 2.5582 3.2470 3.9403 4.8652 15.9872 18.
11 1.8339 2.6032 3.0535 3.8157 4.5748 5.5778 17.2750 19.
12 2.2142 3.0738 3.5706 4.4038 5.2260 6.3038 18.5493 21.
13 2.6172 3.5650 4.1069 5.0088 5.8919 7.0415 19.8119 22.
14 3.0407 4.0747 4.6604 5.6287 6.5706 7.7895 21.0641 23.
15 3.4827 4.6009 5.2293 6.2621 7.2609 8.5468 22.3071 24.
16 3.9416 5.1422 5.8122 6.9077 7.9616 9.3122 23.5418 26.
17 4.4161 5.6972 6.4078 7.5642 8.6718 10.0852 24.7690 27.
18 4.9048 6.2648 7.0149 8.2307 9.3905 10.8649 25.9894 28.
19 5.4068 6.8440 7.6327 8.9065 10.1170 11.6509 27.2036 30.
20 5.9210 7.4338 8.2604 9.5908 10.8508 12.4426 28.4120 31.
21 6.4467 8.0337 8.8972 10.2829 11.5913 13.2396 29.6151 32.
22 6.9830 8.6427 9.5425 10.9823 12.3380 14.0415 30.8133 33.
23 7.5292 9.2604 10.1957 11.6886 13.0905 14.8480 32.0069 35.
24 8.0849 9.8862 10.8564 12.4012 13.8484 15.6587 33.1962 36.
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25 8.6493 10.5197 11.5240 13.1197 14.6114 16.4734 34.3816 37.6525 40.6465 44.3141 46.9279 52.6197
8851 41.9232 45.6417 48.2899 54.0520
1133 43.1945 46.9629 49.6449 55.4760
3371 44.4608 48.2782 50.9934 56.8923
5570 45.7223 49.5879 52.3356 58.3012
7730 46.9792 50.8922 53.6720 59.7031
26 9.2221 11.1602 12.1981 13.8439 15.3792 17.2919 35.5632 38.
27 9.8028 11.8076 12.8785 14.5734 16.1514 18.1139 36.7412 40.
28 10.3909 12.4613 13.5647 15.3079 16.9279 18.9392 37.9159 41.
29 10.9861 13.1211 14.2565 16.0471 17.7084 19.7677 39.0875 42.
30 11.5880 13.7867 14.9535 16.7908 18.4927 20.5992 40.2560 43.

a ν = Degrees of freedom.
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